Kombination Künstlicher Neuronaler Netze: Zur Prognose von Wechselkursen

Author:   Frank Richter
Publisher:   Deutscher Universitats-Verlag
Edition:   2003 ed.
ISBN:  

9783824479009


Pages:   259
Publication Date:   23 September 2003
Format:   Paperback
Availability:   In Print   Availability explained
This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us.

Our Price $224.37 Quantity:  
Add to Cart

Share |

Kombination Künstlicher Neuronaler Netze: Zur Prognose von Wechselkursen


Add your own review!

Overview

Frank Richter prasentiert Moglichkeiten der Kombination Kunstlicher Neuronaler Netze und belegt anhand einer empirischen Untersuchung zur Vorhersage der Relation zwischen US-Dollar und DM die Vorteile von Kombinationsmodellen.

Full Product Details

Author:   Frank Richter
Publisher:   Deutscher Universitats-Verlag
Imprint:   Deutscher Universitats-Verlag
Edition:   2003 ed.
Dimensions:   Width: 14.80cm , Height: 1.50cm , Length: 21.00cm
Weight:   0.369kg
ISBN:  

9783824479009


ISBN 10:   3824479001
Pages:   259
Publication Date:   23 September 2003
Audience:   Professional and scholarly ,  Professional & Vocational
Format:   Paperback
Publisher's Status:   Active
Availability:   In Print   Availability explained
This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us.
Language:   German

Table of Contents

1 Einleitung.- 1.1 Problemstellung.- 1.2 Kapitelübersicht.- 2 Prognose einer ökonomischen Zeitreihe.- 2.1 Prognosen und Modelle.- 2.2 Wechselkursprognosen.- 3 Optimale Modelle.- 3.1 Der bedingte Erwartungswert.- 3.2 Separierung des Inputraumes.- 3.3 Bias-Varianz-Dilemma.- 4 Fehlermaße.- 4.1 Der quadratische Fehler.- 4.2 Die mittlere absolute Abweichung.- 4.3 Sharpe-Ratio.- 5 Kombinationsmodelle.- 5.1 Kombination einzelner Modelle.- 5.2 Kombination von Modulen.- 5.3 Gruppen-Ansatz versus modularer Ansatz.- 6 Künstliche Neuronale Netze.- 6.1 Struktur und Funktionsweise von KNN.- 6.2 Abbildungskapazität.- 6.3 KNN zur Funktionsapproximation.- 6.4 Lernen mit KNN.- 6.5 Datenvorverarbeitung.- 6.6 Lernverfahren für KNN.- 6.7 Komplexitätskontrolle.- 7 Prognose einer Finanzzeitreihe mit KNN.- 7.1 Finanzzeitreihe USD/DEM.- 7.2 Monte-Carlo-Simulation.- 7.3 Inputs.- 7.4 Beispieldaten.- 7.5 Topologie.- 7.6 Lernverfahren.- 7.6.2 Abbruchkriterium.- 7.7 Performance-Maße für die Prognosemodelle.- 7.8 Ergebnisse des Trainings.- 7.9 Modellauswahl.- 7.10 Unterschiedliche Fehlermaße.- 7.11 Modellkombination mit einzelnen KNN.- 8 Mixture Density Networks.- 8.1 Inverse Probleme.- 8.2 Aufbau eines MDN-Modells.- 8.3 Beispielmodelle für ein inverses Problem.- 8.4 Modellierung USD/DEM mit MDN.- 9 Evolution von KNN und MDN.- 9.1 Genetische Algorithmen.- 9.2 Evolution von MDN-Modellen.- 9.3 Anwendung.- 10 Schlussbetrachtungen.

Reviews

Author Information

Dr. Frank Richter promovierte bei Prof. Dr. Heinz Schaefer am Institut für Konjunktur und Strukturforschung der Universität Bremen. Er ist als Spezialist im Bereich analytischer Anwendungen tätig.

Tab Content 6

Author Website:  

Customer Reviews

Recent Reviews

No review item found!

Add your own review!

Countries Available

All regions
Latest Reading Guide

MRG2025CC

 

Shopping Cart
Your cart is empty
Shopping cart
Mailing List