|
![]() |
|||
|
||||
OverviewFull Product DetailsAuthor: Andreas RiederPublisher: Springer Fachmedien Wiesbaden Imprint: Vieweg+Teubner Verlag Edition: 2003 ed. Dimensions: Width: 17.00cm , Height: 1.70cm , Length: 24.00cm Weight: 0.546kg ISBN: 9783528031985ISBN 10: 3528031980 Pages: 300 Publication Date: 30 October 2003 Audience: Professional and scholarly , Professional & Vocational Format: Paperback Publisher's Status: Active Availability: In Print ![]() This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us. Language: German Table of Contents1 Einführung: Was ist ein inverses Problem?.- 1.1 Computer-Tomographie.- 1.2 Impedanz-Tomographie.- 1.3 Ein inverses Streuproblem: Ultraschall-Tomographie.- 1.4 Inverse Wärmeleitungsprobleme.- 1.5 Abstrakte Formulierung inverser Probleme.- 1.6 Übungsaufgaben.- 2 Schlecht gestellte Operatorgleichungen.- 2.1 Verallgemeinerte Inverse (Moore-Penrose-Inverse).- 2.2 Kompakte Operatoren.- 2.3 Singulärwertzerlegung kompakter Operatoren.- 2.4 Ein Funktionalkalkül für kompakte Operatoren.- 2.5 Ein weiteres Beispiel zur SWZ: Die Radon-Transformation.- 2.6 Übungsaufgaben.- 3 Regularisierung linearer Probleme und Optimalität.- 3.1 Vorbetrachtungen.- 3.2 Klassifizierung von Regularisierungsverfahren.- 3.3 Eine allgemeine Theorie linearer Regularisierungen.- 3.4 Das Diskrepanzprinzip.- 3.5 Ein verallgemeinertes Diskrepanzprinzip.- 3.6 Heuristische („?-freie“) Parameterstrategien.- 3.7 Übungsaufgaben.- 4 Tikhonov-Phillips-Regularisierung.- 4.1 Verallgemeinerte Tikhonov-Phillips-Regularisierung.- 4.2 Iterierte Tikhonov-Phillips-Regularisierung.- 4.3 Übungsaufgaben.- 5 Iterative Regularisierungen.- 5.1 Landweber-Verfahren.- 5.2 Semi-iterative Verfahren.- 5.3 Das Verfahren der konjugierten Gradienten (cg-Verfahren).- 5.4 Übungsaufgaben.- 6 Diskretisierung und Regularisierung.- 6.1 Projektionsverfahren.- 6.2 Regularisierung von Projektionsverfahren.- 6.3 Semi-diskrete Probleme: Die Approximative Inverse.- 6.4 Übungsaufgaben.- 7 Nichtlineare schlecht gestellte Probleme.- 7.1 Lokale Schlechtgestelltheit.- 7.2 Fréchet-Differenzierbarkeit.- 7.3 Charakterisierung nichtlinearer schlecht gestellter Probleme.- 7.4 Nichtlineare Tikhonov-Phillips-Regularisierung.- 7.5 Iterative Methoden vom Newton-Typ.- 7.6 Übungsaufgaben.- 8 Anhang: Grundbegriffe aus der Funktionalanalysis.- 8.1Normierte Räume und lineare Abbildungen.- 8.2 Drei Hauptsätze der Funktionalanalysis.- 8.3 Innenprodukträume.ReviewsAuthor InformationProf. Dr. Andreas Rieder lehrt und forscht an den Instituten für Praktische Mathematik und für Wissenschaftliches Rechnen und Mathematische Modellbildung der Universität Karlsruhe (TH). Tab Content 6Author Website:Countries AvailableAll regions |