K-Theory for Group C*-Algebras and Semigroup C*-Algebras

Author:   Joachim J. R. Cuntz ,  Siegfried Echterhoff ,  Xin Li ,  Guoliang Yu
Publisher:   Birkhauser Verlag AG
Edition:   1st ed. 2017
Volume:   47
ISBN:  

9783319599144


Pages:   322
Publication Date:   06 November 2017
Format:   Paperback
Availability:   In Print   Availability explained
This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us.

Our Price $90.95 Quantity:  
Add to Cart

Share |

K-Theory for Group C*-Algebras and Semigroup C*-Algebras


Add your own review!

Overview

This book gives an account of the necessary background for group algebras and crossed products for actions of a group or a semigroup on a space and reports on some very recently developed techniques with applications to particular examples. Much of the material is available here for the first time in book form. The topics discussed are among the most classical and intensely studied C*-algebras. They are important for applications in fields as diverse as the theory of unitary group representations, index theory, the topology of manifolds or ergodic theory of group actions. Part of the most basic structural information for such a C*-algebra is contained in its K-theory. The determination of the K-groups of C*-algebras constructed from group or semigroup actions is a particularly challenging problem. Paul Baum and Alain Connes proposed a formula for the K-theory of the reduced crossed product for a group action that would permit, in principle, its computation. By work of many hands, the formula has by now been verified for very large classes of groups and this work has led to the development of a host of new techniques. An important ingredient is Kasparov's bivariant K-theory. More recently, also the C*-algebras generated by the regular representation of a semigroup as well as the crossed products for actions of semigroups by endomorphisms have been studied in more detail. Intriguing examples of actions of such semigroups come from ergodic theory as well as from algebraic number theory. The computation of the K-theory of the corresponding crossed products needs new techniques. In cases of interest the K-theory of the algebras reflects ergodic theoretic or number theoretic properties of the action.

Full Product Details

Author:   Joachim J. R. Cuntz ,  Siegfried Echterhoff ,  Xin Li ,  Guoliang Yu
Publisher:   Birkhauser Verlag AG
Imprint:   Birkhauser Verlag AG
Edition:   1st ed. 2017
Volume:   47
Weight:   5.574kg
ISBN:  

9783319599144


ISBN 10:   3319599143
Pages:   322
Publication Date:   06 November 2017
Audience:   College/higher education ,  Professional and scholarly ,  Tertiary & Higher Education ,  Professional & Vocational
Format:   Paperback
Publisher's Status:   Active
Availability:   In Print   Availability explained
This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us.

Table of Contents

Introduction.- Crossed products and the Mackey-Rieffel-Green machine.- Bivariant KK-Theory and the Baum-Connes conjecure.- Quantitative K-theory for geometric operator algebras.- Semigroup C*-algebras.- Algebraic actions and their C*-algebras.- Semigroup C*-algebras and toric varieties.

Reviews

Author Information

Joachim Cuntz is a full Professor at the Westfälische Wilhelms-Universität in Münster, Germany. Siegfried Echterhoff is a full Professor at the Westfälische Wilhelms-Universität in Münster, Germany. Xin Li is a Senior Lecturer in Pure Mathematics at Queen Mary University of London, United Kingdom. Guoliang Yu is Powell Chair in Mathematics and Professor at the Texas A&M University, USA.

Tab Content 6

Author Website:  

Customer Reviews

Recent Reviews

No review item found!

Add your own review!

Countries Available

All regions
Latest Reading Guide

MRG2025CC

 

Shopping Cart
Your cart is empty
Shopping cart
Mailing List