Jordan Algebras and Algebraic Groups

Author:   Tonny A. Springer
Publisher:   Springer-Verlag Berlin and Heidelberg GmbH & Co. KG
Edition:   Reprint of 1st ed
Volume:   75
ISBN:  

9783540636328


Pages:   173
Publication Date:   11 December 1997
Format:   Paperback
Availability:   Out of stock   Availability explained
The supplier is temporarily out of stock of this item. It will be ordered for you on backorder and shipped when it becomes available.

Our Price $184.67 Quantity:  
Add to Cart

Share |

Jordan Algebras and Algebraic Groups


Add your own review!

Overview

From the reviews: ""This book presents an important and novel approach to Jordan algebras. Jordan algebras have come to play a role in many areas of mathematics, including Lie algebras and the geometry of Chevalley groups. Springer's work will be of service to research workers familiar with linear algebraic groups who find they need to know something about Jordan algebras and will provide Jordan algebraists with new techniques and a new approach to finite-dimensional algebras over fields."" (American Scientist) ""By placing the classification of Jordan algebras in the perspective of classification of certain root systems, the book demonstrates that the structure theories associative, Lie, and Jordan algebras are not separate creations but rather instances of the one all-encompassing miracle of root systems..."" (Math. Reviews)

Full Product Details

Author:   Tonny A. Springer
Publisher:   Springer-Verlag Berlin and Heidelberg GmbH & Co. KG
Imprint:   Springer-Verlag Berlin and Heidelberg GmbH & Co. K
Edition:   Reprint of 1st ed
Volume:   75
Dimensions:   Width: 15.50cm , Height: 1.00cm , Length: 23.50cm
Weight:   0.290kg
ISBN:  

9783540636328


ISBN 10:   3540636323
Pages:   173
Publication Date:   11 December 1997
Audience:   College/higher education ,  Professional and scholarly ,  Postgraduate, Research & Scholarly ,  Professional & Vocational
Format:   Paperback
Publisher's Status:   Active
Availability:   Out of stock   Availability explained
The supplier is temporarily out of stock of this item. It will be ordered for you on backorder and shipped when it becomes available.

Table of Contents

Reviews

From the reviews: This book presents an important and novel approach to Jordan algebras. Jordan algebras have come to play a role in many areas of mathematics, including Lie algebras and the geometry of Chevalley groups. Springer's work will be of service to research workers familiar with linear algebraic groups who find they need to know something about Jordan algebras and will provide Jordan algebraists with new techniques and a new approach to finite-dimensional algebras over fields. (American Scientist) By placing the classification of Jordan algebras in the perspective of classification of certain root systems, the book demonstrates that the structure theories associative, Lie, and Jordan algebras are not separate creations but rather instances of the one all-encompassing miracle of root systems. ... (Math. Reviews)


"From the reviews: ""This book presents an important and novel approach to Jordan algebras. Jordan algebras have come to play a role in many areas of mathematics, including Lie algebras and the geometry of Chevalley groups. Springer's work will be of service to research workers familiar with linear algebraic groups who find they need to know something about Jordan algebras and will provide Jordan algebraists with new techniques and a new approach to finite-dimensional algebras over fields."" (American Scientist) ""By placing the classification of Jordan algebras in the perspective of classification of certain root systems, the book demonstrates that the structure theories associative, Lie, and Jordan algebras are not separate creations but rather instances of the one all-encompassing miracle of root systems. ..."" (Math. Reviews)"


Author Information

Biography of Tonny A. Springer Born on February 13, 1926 at the Hague, Holland, Tonny A. Springer studied mathematics at the University of Leiden, obtaining his Ph. D. in 1951. He has been at the University of Utrecht since 1955, from 1959-1991 as a full professor, and since 1991 as an emeritus professor. He has held visiting positions at numerous prestigious institutions all over the globe, including the Institute for Advanced Study (Princeton), the Institut des Hautes Etudes Scientifiques (Bures-sur-Yvette) and the Tata Institute of Fundamental Research (Bombay). Throughout his career T. A. Springer has been involved in research on various aspects of the theory of linear algebraic groups (conjugacy classes, Galois cohomology, Weyl groups).

Tab Content 6

Author Website:  

Customer Reviews

Recent Reviews

No review item found!

Add your own review!

Countries Available

All regions
Latest Reading Guide

MRG2025CC

 

Shopping Cart
Your cart is empty
Shopping cart
Mailing List