|
![]() |
|||
|
||||
OverviewFull Product DetailsAuthor: R.J. Hyndman , Peter J. Brockwell , Richard A. DavisPublisher: Springer-Verlag New York Inc. Imprint: Springer-Verlag New York Inc. Edition: 1994 ed. Dimensions: Width: 15.50cm , Height: 1.40cm , Length: 23.50cm Weight: 0.248kg ISBN: 9780387943374ISBN 10: 0387943374 Pages: 118 Publication Date: 12 August 1994 Audience: General/trade , General Format: Paperback Publisher's Status: Active Availability: Out of stock ![]() The supplier is temporarily out of stock of this item. It will be ordered for you on backorder and shipped when it becomes available. Table of Contents1 Introduction.- 1.1 The Programs.- 1.2 System Requirements.- 1.2.1 Installation.- 1.2.2 Running ITSM.- 1.2.3 Printing Graphs.- 1.3 Creating Data Files.- 2 PEST.- 2.1 Getting Started.- 2.1.1 Running PEST.- 2.1.2 PEST Tutorial.- 2.2 Preparing Your Data for Modelling.- 2.2.1 Entering Data.- 2.2.2 Filing Data.- 2.2.3 Plotting Data.- 2.2.4 Transforming Data.- 2.3 Finding a Model for Your Data.- 2.3.1 The ACF and PACF.- 2.3.2 Entering a Model.- 2.3.3 Preliminary Parameter Estimation.- 2.3.4 The AICC Statistic.- 2.3.5 Changing Your Model.- 2.3.6 Parameter Estimation; the Gaussian Likelihood.- 2.3.7 Optimization Results.- 2.4 Testing Your Model.- 2.4.1 Plotting the Residuals.- 2.4.2 ACF/PACF of the Residuals.- 2.4.3 Testing for Randomness of the Residuals.- 2.5 Prediction.- 2.5.1 Forecast Criteria.- 2.5.2 Forecast Results.- 2.5.3 Inverting Transformations.- 2.6 Model Properties.- 2.6.1 ARMA Models.- 2.6.2 Model ACF, PACF.- 2.6.3 Model Representations.- 2.6.4 Generating Realizations of a Random Series.- 2.6.5 Model Spectral Density.- 2.7 Nonparametric Spectral Estimation.- 2.7.1 Plotting the Periodogram.- 2.7.2 Plotting the Cumulative Periodogram.- 2.7.3 Fisher's Test.- 2.7.4 Smoothing to Estimate the Spectral Density.- 3 SMOOTH.- 3.1 Introduction.- 3.2 Moving Average Smoothing.- 3.3 Exponential Smoothing.- 3.4 Removing High Frequency Components.- 4 SPEC.- 4.1 Introduction.- 4.2 Bivariate Spectral Analysis.- 4.2.1 Estimating the Spectral Density of Each Series.- 4.2.2 Estimating the Absolute Coherency Spectrum.- 4.2.3 Estimating the Phase Spectrum.- 5 TRANS.- 5.1 Introduction.- 5.2 Computing Cross Correlations.- 5.3 An Overview of Transfer Function Modelling.- 5.4 Fitting a Preliminary Transfer Function Model.- 5.5 Calculating Residuals from a Transfer Function Model.- 5.6 LS Estimation and Prediction with Transfer Function Models.- 6 ARVEC.- 6.1 Introduction.- 6.1.1 Multivariate Autoregression.- 6.2 Model Selection with the AICC Criterion.- 6.3 Forecasting with the Fitted Model.- 7 BURG.- 7.1 Introduction.- 8 ARAR.- 8.1 Introduction.- 8.1.1 Memory Shortening.- 8.1.2 Fitting a Subset Autoregression.- 8.2 Running the Program.- 9 LONGMEM.- 9.1 Introduction.- 9.2 Parameter Estimation.- 9.3 Prediction.- 9.4 Simulation.- 9.5 Plotting the Model and Sample ACVF.- Appendix A: The Screen Editor WORD6.- A.1 Basic Editing.- A.2 Alternate Keys.- A.3 Printing a File.- A.4 Merging Two or More Files.- A.5 Margins and Left and Centre Justification.- A.6 Tab Settings.- A.7 Block Commands.- A.8 Searching.- A.9 Special Characters.- A.10 Function Keys.- A. 11 Editing Information.- Appendix B: Data Sets.ReviewsAlthough it has such an easy-to use appearance and a menu driven structure, the programs are surprisingly flexible and many sophisticated time series analyses can be carried out with the package. (Journal of the American Statistical Association) Author InformationTab Content 6Author Website:Countries AvailableAll regions |