Iterative Learning Control Algorithms and Experimental Benchmarking

Author:   Eric Rogers (University of Southampton, Uk) ,  Bing Chu ,  Christopher Freeman ,  Paul Lewin (University of Southampton)
Publisher:   John Wiley & Sons Inc
ISBN:  

9780470745045


Pages:   448
Publication Date:   16 February 2023
Format:   Hardback
Availability:   Out of stock   Availability explained
The supplier is temporarily out of stock of this item. It will be ordered for you on backorder and shipped when it becomes available.

Our Price $176.95 Quantity:  
Add to Cart

Share |

Iterative Learning Control Algorithms and Experimental Benchmarking


Add your own review!

Overview

Full Product Details

Author:   Eric Rogers (University of Southampton, Uk) ,  Bing Chu ,  Christopher Freeman ,  Paul Lewin (University of Southampton)
Publisher:   John Wiley & Sons Inc
Imprint:   John Wiley & Sons Inc
Dimensions:   Width: 16.80cm , Height: 3.00cm , Length: 24.40cm
Weight:   0.992kg
ISBN:  

9780470745045


ISBN 10:   0470745045
Pages:   448
Publication Date:   16 February 2023
Audience:   Professional and scholarly ,  Professional & Vocational
Format:   Hardback
Publisher's Status:   Active
Availability:   Out of stock   Availability explained
The supplier is temporarily out of stock of this item. It will be ordered for you on backorder and shipped when it becomes available.

Table of Contents

Preface vii 1 Iterative Learning Control: Origins and General Overview 1 1.1 The Origins of ILC 2 1.2 A Synopsis of the Literature 5 1.3 Linear Models and Control Structures 6 1.3.1 Differential Linear Dynamics 7 1.4 ILC for Time-Varying Linear Systems 9 1.5 Discrete Linear Dynamics 11 1.6 ILC in a 2D Linear Systems/Repetitive Processes Setting 16 1.6.1 2D Discrete Linear Systems and ILC 16 1.6.2 ILC in a Repetitive Process Setting 17 1.7 ILC for Nonlinear Dynamics 18 1.8 Robust, Stochastic, and Adaptive ILC 19 1.9 Other ILC Problem Formulations 21 1.10 Concluding Remarks 22 2 Iterative Learning Control: Experimental Benchmarking 23 2.1 Robotic Systems 23 2.1.1 Gantry Robot 23 2.1.2 Anthromorphic Robot Arm 25 2.2 Electro-Mechanical Systems 26 2.2.1 Nonminimum Phase System 26 2.2.2 Multivariable Testbed 29 2.2.3 Rack Feeder System 30 2.3 Free Electron Laser Facility 32 2.4 ILC in Healthcare 37 2.5 Concluding Remarks 38 3 An Overview of Analysis and Design for Performance 39 3.1 ILC Stability and Convergence for Discrete Linear Dynamics 39 3.1.1 Transient Learning 41 3.1.2 Robustness 42 3.2 Repetitive Process/2D Linear Systems Analysis 43 3.2.1 Discrete Dynamics 43 3.2.2 Repetitive Process Stability Theory 46 3.2.3 Error Convergence Versus Along the Trial Performance 51 3.3 Concluding Remarks 55 4 Tuning and Frequency Domain Design of Simple Structure ILC Laws 57 4.1 Tuning Guidelines 57 4.2 Phase-Lead and Adjoint ILC Laws for Robotic-Assisted Stroke Rehabilitation 58 4.2.1 Phase-Lead ILC 61 4.2.2 Adjoint ILC 63 4.2.3 Experimental Results 63 4.3 ILC for Nonminimum Phase Systems Using a Reference Shift Algorithm 68 4.3.1 Filtering 74 4.3.2 Numerical Simulations 75 4.3.3 Experimental Results 75 4.4 Concluding Remarks 81 5 Optimal ILC 83 5.1 NOILC 83 5.1.1 Theory 83 5.1.2 NOILC Computation 86 5.2 Experimental NOILC Performance 89 5.2.1 Test Parameters 90 5.3 NOILC Applied to Free Electron Lasers 93 5.4 Parameter Optimal ILC 96 5.4.1 An Extension to Adaptive ILC 98 5.5 Predictive NOILC 99 5.5.1 Controlled System Analysis 104 5.5.2 Experimental Validation 106 5.6 Concluding Remarks 116 6 Robust ILC 117 6.1 Robust Inverse Model-Based ILC 117 6.2 Robust Gradient-Based ILC 123 6.2.1 Model Uncertainty –Case (i) 127 6.2.2 Model Uncertainty –Cases (ii) and (iii) 128 6.3 H∞ Robust ILC 132 6.3.1 Background and Early Results 132 6.3.2 H∞ Based Robust ILC Synthesis 137 6.3.3 A Design Example 142 6.3.4 Robust ILC Analysis Revisited 151 6.4 Concluding Remarks 153 7 Repetitive Process-Based ILC Design 155 7.1 Design with Experimental Validation 155 7.1.1 Discrete Nominal Model Design 155 7.1.2 Robust Design –Norm-Bounded Uncertainty 160 7.1.3 Robust Design – Polytopic Uncertainty and Simplified Implementation 165 7.1.4 Design for Differential Dynamics 170 7.2 Repetitive Process-Based ILC Design Using Relaxed Stability Theory 170 7.3 Finite Frequency Range Design and Experimental Validation 178 7.3.1 Stability Analysis 178 7.4 HOILC Design 194 7.5 Inferential ILC Design 196 7.6 Concluding Remarks 202 8 Constrained ILC Design 203 8.1 ILC with Saturating Inputs Design 203 8.1.1 Observer-Based State Control Law Design 203 8.1.2 ILC Design with Full State Feedback 209 8.1.3 Comparison with an Alternative Design 210 8.1.4 Experimental Results 215 8.2 Constrained ILC Design for LTV Systems 219 8.2.1 Problem Specification 219 8.2.2 Implementation of Constrained Algorithm 1 – a Receding Horizon Approach 223 8.2.3 Constrained ILC Algorithm 3 224 8.3 Experimental Validation on a High-Speed Rack Feeder System 226 8.3.1 Simulation Case Studies 226 8.3.2 Other Performance Issues 230 8.3.3 Experimental Results 236 8.3.4 Algorithm 1: QP-Based Constrained ILC 236 8.3.5 Algorithm 2: Receding Horizon Approach-Based Constrained ILC 237 8.4 Concluding Remarks 238 9 ILC for Distributed Parameter Systems 241 9.1 Gust Load Management for Wind Turbines 241 9.1.1 Oscillatory Flow 246 9.1.2 Flow with Vortical Disturbances 251 9.1.3 Blade Conditioning Measures 253 9.1.4 Actuator Dynamics and Trial-Varying ILC 254 9.1.5 Proper Orthogonal Decomposition-Based Reduced Order Model Design 257 9.2 Design Based on Finite-Dimensional Approximate Models with Experimental Validation 266 9.3 Finite Element and Sequential Experimental Design-based ILC 280 9.3.1 Finite Element Discretization 281 9.3.2 Application of ILC 283 9.3.3 Optimal Measurement Data Selection 284 9.4 Concluding Remarks 288 10 Nonlinear ILC 289 10.1 Feedback Linearized ILC for Center-Articulated Industrial Vehicles 289 10.2 Input–Output Linearization-based ILC Applied to Stroke Rehabilitation 293 10.2.1 System Configuration and Modeling 293 10.2.2 Input–Output Linearization 296 10.2.3 Experimental Results 299 10.3 Gap Metric ILC with Application to Stroke Rehabilitation 302 10.4 Nonlinear ILC – an Adaptive Lyapunov Approach 310 10.4.1 Motivation and Background Results 311 10.5 Extremum-Seeking ILC 320 10.6 Concluding Remarks 322 11 Newton Method Based ILC 323 11.1 Background 323 11.2 Algorithm Development 324 11.2.1 Computation of Newton-Based ILC 326 11.2.2 Convergence Analysis 327 11.3 Monotonic Trial-to-Trial Error Convergence 328 11.3.1 Monotonic Convergence with Parameter Optimization 329 11.3.2 Parameter Optimization for Monotonic and Fast Trial-to-Trial Error Convergence 330 11.4 Newton ILC for 3D Stroke Rehabilitation 331 11.4.1 Experimental Results 336 11.5 Constrained Newton ILC Design 337 11.6 Concluding Remarks 347 12 Stochastic ILC 349 12.1 Background and Early Results 349 12.2 Frequency Domain-Based Stochastic ILC Design 356 12.3 Experimental Comparison of ILC Laws 364 12.4 Repetitive Process-Based Analysis and Design 378 12.5 Concluding Remarks 387 13 Some Emerging Topics in Iterative Learning Control 389 13.1 ILC for Spatial Path Tracking 389 13.2 ILC in Agriculture and Food Production 394 13.2.1 The Broiler Production Process 395 13.2.2 ILC for FCR Minimization 400 13.2.3 Design Validation 404 13.3 ILC for Quantum Control 406 13.4 ILC in the Utility Industries 410 13.4.1 ILC Design 413 13.5 Concluding Remarks 415 Appendix A 417 A.1 The Entries in the Transfer-Function Matrix (2.2) 417 A.2 Entries in the Transfer-Function Matrix (2.4) 418 A.3 Matrices E1, E2, H1, and H2 for the Designs of (7.36) and (7.37) 419 References 421 Index 437

Reviews

Author Information

Professor Eric Rogers, Dr. Bing Chu, Professor Christopher Freeman, and Professor Paul Lewin, University of Southampton, UK

Tab Content 6

Author Website:  

Customer Reviews

Recent Reviews

No review item found!

Add your own review!

Countries Available

All regions
Latest Reading Guide

MRG2025CC

 

Shopping Cart
Your cart is empty
Shopping cart
Mailing List