|
![]() |
|||
|
||||
OverviewLet $F$ be a number field or a $p$-adic field. The author introduces in Chapter 2 of this work two reductive rank one $F$-groups, $\mathbf{H_1}$, $\mathbf{H_2}$, which are twisted endoscopic groups of $\textup{GSp}(2)$ with respect to a fixed quadratic character $\varepsilon$ of the idele class group of $F$ if $F$ is global, $F^\times$ if $F$ is local. When $F$ is global, Langlands functoriality predicts that there exists a canonical lifting of the automorphic representations of $\mathbf{H_1}$, $\mathbf{H_2}$ to those of $\textup{GSp}(2)$. In Chapter 4, the author establishes this lifting in terms of the Satake parameters which parameterize the automorphic representations. By means of this lifting he provides a classification of the discrete spectrum automorphic representations of $\textup{GSp}(2)$ which are invariant under tensor product with $\varepsilon$. Table of Contents: Introduction; $\varepsilon$-endoscopy for $\textup{GSp}(2)$; The trace formula; Global lifting; The local picture; Appendix A. Summary of global lifting; Appendix B. Fundamental lemma; Bibliography; List of symbols; Index. (MEMO/204/957) Full Product DetailsAuthor: Ping-Shun ChanPublisher: American Mathematical Society Imprint: American Mathematical Society Edition: New ed. Volume: v. 204, No. 957 Weight: 0.010kg ISBN: 9780821848227ISBN 10: 0821848224 Pages: 172 Publication Date: 30 March 2010 Audience: Professional and scholarly , Professional and scholarly , College/higher education , Professional & Vocational , Professional & Vocational Format: Paperback Publisher's Status: Active Availability: To order ![]() Stock availability from the supplier is unknown. We will order it for you and ship this item to you once it is received by us. Table of ContentsReviewsAuthor InformationTab Content 6Author Website:Countries AvailableAll regions |