|
![]() |
|||
|
||||
OverviewThis book introduces geometric spectral theory in the context of infinite-area Riemann surfaces, providing a comprehensive account of dramatic recent developments in the field. These developments were prompted by advances in geometric scattering theory in the early 1990s which provided new tools for the study of resonances. Hyperbolic surfaces provide an ideal context in which to introduce these new ideas, with technical difficulties kept to a minimum. The spectral theory of hyperbolic surfaces is a point of intersection for a great variety of areas, including quantum physics, discrete groups, differential geometry, number theory, complex analysis, spectral theory, and ergodic theory. The book highlights these connections, at a level accessible to graduate students and researchers from a wide range of fields. Topics covered include an introduction to the geometry of hyperbolic surfaces, analysis of the resolvent of the Laplacian, characterization of the spectrum, scattering theory, resonances and scattering poles, the Selberg zeta function, the Poisson formula, distribution of resonances, the inverse scattering problem, Patterson- Sullivan theory, and the dynamical approach to the zeta function. Full Product DetailsAuthor: Radu Zaharopol , David BorthwickPublisher: Springer Imprint: Springer Dimensions: Width: 23.40cm , Height: 1.90cm , Length: 15.60cm Weight: 0.513kg ISBN: 9780817671341ISBN 10: 081767134 Pages: 368 Publication Date: 25 August 2008 Audience: General/trade , General Format: Paperback Publisher's Status: Active Availability: Awaiting stock ![]() The supplier is currently out of stock of this item. It will be ordered for you and placed on backorder. Once it does come back in stock, we will ship it out for you. Table of ContentsReviewsAuthor InformationTab Content 6Author Website:Countries AvailableAll regions |