Introduction to the Theory of Stability

Author:   David R. Merkin ,  F.F. Afagh ,  F.F. Afagh ,  A.L. Smirnov
Publisher:   Springer-Verlag New York Inc.
Edition:   1997 ed.
Volume:   24
ISBN:  

9780387947617


Pages:   320
Publication Date:   14 November 1996
Format:   Hardback
Availability:   In Print   Availability explained
This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us.

Our Price $303.60 Quantity:  
Add to Cart

Share |

Introduction to the Theory of Stability


Overview

The present book deals with the issues of stability of Motion which most often are encountered in the analysis of scientific and technical problems. There are many comprehensive monographs on the theory of stability of motion, with each one devoted to a separate complicated issue of the theory. The main advantage of this book, however, is its simple yet simultaneous rigorous presentation of the concepts of the theory, which often are presented in the context of applied problems with detailed examples demonstrating effective methods of solving practical problems.

Full Product Details

Author:   David R. Merkin ,  F.F. Afagh ,  F.F. Afagh ,  A.L. Smirnov
Publisher:   Springer-Verlag New York Inc.
Imprint:   Springer-Verlag New York Inc.
Edition:   1997 ed.
Volume:   24
Dimensions:   Width: 15.50cm , Height: 2.00cm , Length: 23.30cm
Weight:   1.450kg
ISBN:  

9780387947617


ISBN 10:   0387947612
Pages:   320
Publication Date:   14 November 1996
Audience:   College/higher education ,  Professional and scholarly ,  Postgraduate, Research & Scholarly ,  Professional & Vocational
Format:   Hardback
Publisher's Status:   Active
Availability:   In Print   Availability explained
This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us.

Table of Contents

1 Formulation of the Problem.- 1.1 Basic Definitions.- 1.2 Equations of Perturbed Motion.- 1.3 Examples of Derivation of Equations of a Perturbed Motion.- 1.4 Problems.- 2 The Direct Liapunov Method. Autonomous Systems.- 2.1 Liapunov Functions. Sylvester’s Criterion.- 2.2 Liapunov’s Theorem of Motion Stability.- 2.3 Theorems of Asymptotic Stability.- 2.4 Motion Instability Theorems.- 2.5 Methods of Obtaining Liapunov Functions.- 2.6 Application of Liapunov’s Theorem.- 2.7 Application of Stability Theorems.- 2.8 Problems.- 3 Stability of Equilibrium States and Stationary Motions of Conservative Systems.- 3.1 Lagrange’s Theorem.- 3.2 Invertibility of Lagrange’s Theorem.- 3.3 Cyclic Coordinates. The Routh Transform.- 3.4 Stationary Motion and Its Stability Conditions.- 3.5 Examples.- 3.6 Problems.- 4 Stability in First Approximation.- 4.1 Formulation of the Problem.- 4.2 Preliminary Remarks.- 4.3 Main Theorems of Stability in First Approximation.- 4.4 Hurwitz’s Criterion.- 4.5 Examples.-4.6 Problems.- 5 Stability of Linear Autonomous Systems.- 5.1 Introduction.- 5.2 Matrices and Basic Matrix Operations.- 5.3 Elementary Divisors.- 5.4 Autonomous Linear Systems.- 5.5 Problems.- 6 The Effect of Force Type on Stability of Motion.- 6.1 Introduction.- 6.2 Classification of Forces.- 6.3 Formulation of the Problem.- 6.4 The Stability Coefficients.- 6.5 The Effect of Gyroscopic and Dissipative Forces.- 6.6 Application of the Thomson-Tait-Chetaev Theorems.- 6.7 Stability Under Gyroscopic and Dissipative Forces.- 6.8 The Effect of Nonconservative Positional Forces.- 6.9 Stability in Systems with Nonconservative Forces.- 6.10 Problems.- 7 The Stability of Nonautonomous Systems.- 7.1 Liapunov Functions and Sylvester Criterion.- 7.2 The Main Theorems of the Direct Method.- 7.3 Examples of Constructing Liapunov Functions.- 7.4 System with Nonlinear Stiffness.- 7.5 Systems with Periodic Coefficients.- 7.6 Stability of Solutions of Mathieu-Hill Equations.- 7.7 Examples of Stability Analysis.- 7.8 Problems.- 8 Application of the Direct Method of Liapunov to the Investigation of Automatic Control Systems.- 8.1 Introduction.- 8.2 Differential Equations of Perturbed Motion of Automatic Control Systems.- 8.3 Canonical Equations of Perturbed Motion of Control Systems.- 8.4 Constructing Liapunov Functions.- 8.5 Conditions of Absolute Stability.- 9 The Frequency Method of Stability Analysis.- 9.1 Introduction.- 9.2 Transfer Functions and Frequency Characteristics.- 9.3 The Nyquist Stability Criterion for a Linear System.- 9.4 Stability of Continuously Nonlinear Systems.- 9.5 Examples.- 9.6 Problems.- References.

Reviews

Author Information

Tab Content 6

Author Website:  

Countries Available

All regions
Latest Reading Guide

NOV RG 20252

 

Shopping Cart
Your cart is empty
Shopping cart
Mailing List