|
![]() |
|||
|
||||
OverviewIntroduction to the Calculus of Variations and Control with Modern Applications provides the fundamental background required to develop rigorous necessary conditions that are the starting points for theoretical and numerical approaches to modern variational calculus and control problems. The book also presents some classical sufficient conditions and discusses the importance of distinguishing between the necessary and sufficient conditions. In the first part of the text, the author develops the calculus of variations and provides complete proofs of the main results. He explains how the ideas behind the proofs are essential to the development of modern optimization and control theory. Focusing on optimal control problems, the second part shows how optimal control is a natural extension of the classical calculus of variations to more complex problems. By emphasizing the basic ideas and their mathematical development, this book gives you the foundation to use these mathematical tools to then tackle new problems. The text moves from simple to more complex problems, allowing you to see how the fundamental theory can be modified to address more difficult and advanced challenges. This approach helps you understand how to deal with future problems and applications in a realistic work environment. Full Product DetailsAuthor: John A. BurnsPublisher: Taylor & Francis Ltd Imprint: Chapman & Hall/CRC Weight: 0.453kg ISBN: 9780367379551ISBN 10: 0367379554 Pages: 564 Publication Date: 23 September 2019 Audience: Professional and scholarly , Professional & Vocational Format: Paperback Publisher's Status: Active Availability: In Print ![]() This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us. Table of ContentsReviewsAuthor InformationJohn Burns is the Hatcher Professor of Mathematics, Interdisciplinary Center for Applied Mathematics at Virginia Polytechnic Institute and State University. He is a fellow of the IEEE and SIAM. His research interests include distributed parameter control; approximation, control, identification, and optimization of functional and partial differential equations; aero-elastic control systems; fluid/structural control systems; smart materials; optimal design; and sensitivity analysis. Tab Content 6Author Website:Countries AvailableAll regions |