|
![]() |
|||
|
||||
OverviewFull Product DetailsAuthor: John LeePublisher: Springer-Verlag New York Inc. Imprint: Springer-Verlag New York Inc. Edition: 2nd ed. 2012 Volume: 218 Dimensions: Width: 15.50cm , Height: 3.70cm , Length: 23.50cm Weight: 1.092kg ISBN: 9781489994752ISBN 10: 1489994750 Pages: 708 Publication Date: 19 September 2014 Audience: Professional and scholarly , Professional & Vocational Format: Paperback Publisher's Status: Active Availability: Manufactured on demand ![]() We will order this item for you from a manufactured on demand supplier. Table of ContentsPreface.- 1 Smooth Manifolds.- 2 Smooth Maps.- 3 Tangent Vectors.- 4 Submersions, Immersions, and Embeddings.- 5 Submanifolds.- 6 Sard's Theorem.- 7 Lie Groups.- 8 Vector Fields.- 9 Integral Curves and Flows.- 10 Vector Bundles.- 11 The Cotangent Bundle.- 12 Tensors.- 13 Riemannian Metrics.- 14 Differential Forms.- 15 Orientations.- 16 Integration on Manifolds.- 17 De Rham Cohomology.- 18 The de Rham Theorem.- 19 Distributions and Foliations.- 20 The Exponential Map.- 21 Quotient Manifolds.- 22 Symplectic Manifolds.- Appendix A: Review of Topology.- Appendix B: Review of Linear Algebra.- Appendix C: Review of Calculus.- Appendix D: Review of Differential Equations.- References.- Notation Index.- Subject Index.ReviewsFrom the reviews of the second edition: It starts off with five chapters covering basics on smooth manifolds up to submersions, immersions, embeddings, and of course submanifolds. ... the book under review is laden with excellent exercises that significantly further the reader's understanding of the material, and Lee takes great pains to motivate everything well all the way through ... . a fine graduate-level text for differential geometers as well as people like me, fellow travelers who always wish they knew more about such a beautiful subject. (Michael Berg, MAA Reviews, October, 2012) From the reviews of the second edition: “It starts off with five chapters covering basics on smooth manifolds up to submersions, immersions, embeddings, and of course submanifolds. … the book under review is laden with excellent exercises that significantly further the reader’s understanding of the material, and Lee takes great pains to motivate everything well all the way through … . a fine graduate-level text for differential geometers as well as people like me, fellow travelers who always wish they knew more about such a beautiful subject.” (Michael Berg, MAA Reviews, October, 2012) Author InformationJohn M. Lee is Professor of Mathematics at the University of Washington in Seattle, where he regularly teaches graduate courses on the topology and geometry of manifolds. He was the recipient of the American Mathematical Society's Centennial Research Fellowship and he is the author of four previous Springer books: the first edition (2003) of Introduction to Smooth Manifolds, the first edition (2000) and second edition (2010) of Introduction to Topological Manifolds, and Riemannian Manifolds: An Introduction to Curvature (1997). Tab Content 6Author Website:Countries AvailableAll regions |