Introduction to Robust and Quasi-Robust Statistical Methods

Author:   W.J.J. Rey
Publisher:   Springer-Verlag Berlin and Heidelberg GmbH & Co. KG
Edition:   Softcover reprint of the original 1st ed. 1983
ISBN:  

9783540128663


Pages:   238
Publication Date:   01 November 1983
Format:   Paperback
Availability:   Out of stock   Availability explained
The supplier is temporarily out of stock of this item. It will be ordered for you on backorder and shipped when it becomes available.

Our Price $145.07 Quantity:  
Add to Cart

Share |

Introduction to Robust and Quasi-Robust Statistical Methods


Add your own review!

Overview

Full Product Details

Author:   W.J.J. Rey
Publisher:   Springer-Verlag Berlin and Heidelberg GmbH & Co. KG
Imprint:   Springer-Verlag Berlin and Heidelberg GmbH & Co. K
Edition:   Softcover reprint of the original 1st ed. 1983
Dimensions:   Width: 17.00cm , Height: 1.30cm , Length: 24.40cm
Weight:   0.442kg
ISBN:  

9783540128663


ISBN 10:   3540128662
Pages:   238
Publication Date:   01 November 1983
Audience:   College/higher education ,  Professional and scholarly ,  Undergraduate ,  Postgraduate, Research & Scholarly
Format:   Paperback
Publisher's Status:   Active
Availability:   Out of stock   Availability explained
The supplier is temporarily out of stock of this item. It will be ordered for you on backorder and shipped when it becomes available.

Table of Contents

1. Introduction and Summary.- 1.1. History and main contributions.- 1.2. Why robust estimations?.- 1.3. Summary.- A The Theoretical Background.- 2. Sample spaces, distributions, estimators.- 2.1. Introduction.- 2.2. Example.- 2.3. Metrics for probability distributions.- 2.4. Estimators seen as functionals of distributions.- 3. Robustness, breakdown point and influence function.- 3.1. Definition of robustness.- 3.2. Definition of breakdown point.- 3.3. The influence function.- 4. The jackknife method.- 4.1. Introduction.- 4.2. The jackknife advanced theory.- 4.3. Case study.- 4.4. Comments.- 5. Bootstrap methods, sampling distributions.- 5.1. Bootstrap methods.- 5.2. Sampling distribution of estimators.- B.- 6. Type M estimators.- 6.1. Definition.- 6.2. Influence function and variance.- 6.3. Robust M estimators.- 6.4. Robustness, quasi-robustness and non-robustness.- 6.4.1. Statement of the location problem.- 6.4.2. Least powers.- 6.4.3. Huber's function.- 6.4.4. Modification to Huber's proposal.- 6.4.5. Function Fair .- 6.4.6. Cauchy-s function.- 6.4.7. Welsch-s function.- 6.4.8. Bisquare function.- 6.4.9. Andrews's function.- 6.4.10. Selection of the ?-function.- 7. Type L estimators.- 7.1. Definition.- 7.2. Influence function and variance.- 7.3. The median and related estimators.- 8. Type R estimator.- 8.1. Definition.- 8.2. Influence function and variance.- 9. Type MM estimators.- 9.1. Definition.- 9.2. Influence function and variance.- 9.3. Linear model and robustness - Generalities.- 9.4. Scale of residuals.- 9.5. Robust linear regression.- 9.6. Robust estimation of multivariate location and scatter.- 9.7. Robust non-linear regression.- 9.8. Numerical methods.- 9.8.1. Relaxation methods.- 9.8.2. Simultaneous solutions.- 9.8.3 Solution of fixed-point and non-linear equations.- 10. Quantile estimators and confidence intervals.- 10.1. Quantile estimators.- 10.2. Confidence intervals.- 11. Miscellaneous.- 11.1. Outliers and their treatment.- 11.2. Analysis of variance, constraints on minimization.- 11.3. Adaptive estimators.- 11.4. Recursive estimators.- 11.5. Concluding remark.- 12. References.- 13. Subject index.

Reviews

Author Information

Tab Content 6

Author Website:  

Customer Reviews

Recent Reviews

No review item found!

Add your own review!

Countries Available

All regions
Latest Reading Guide

MRG2025CC

 

Shopping Cart
Your cart is empty
Shopping cart
Mailing List