|
![]() |
|||
|
||||
OverviewAs data is a predominant resource in applications, Riemannian geometry is a natural framework to model and unify complex nonlinear sources of data. However, the development of computational tools from the basic theory of Riemannian geometry is laborious. In this monograph the authors present a self-contained exposition of the basic concepts of Riemannian geometry from a computational viewpoint, providing illustrations and examples at each step. They proceed to demonstrate how these concepts are implemented in the open-source project Geomstats, explaining the choices that were made and the conventions chosen. The reader thus learns in one self-contained volume the theory of Riemann geometry and geometric statistics and their implementation to perform statistics and machine learning on manifolds. Containing many practical Python examples, this monograph is a valuable resource both for mathematicians and applied scientists to learn the theory of Riemann geometry and its use in practice implemented with the Geomstats package where most of the difficulties are hidden under high-level functions. Full Product DetailsAuthor: Nicolas Guigui , Nina Miolane , Xavier PennecPublisher: now publishers Inc Imprint: now publishers Inc Weight: 0.265kg ISBN: 9781638281542ISBN 10: 1638281548 Pages: 182 Publication Date: 22 February 2023 Audience: Professional and scholarly , Professional & Vocational Format: Paperback Publisher's Status: Active Availability: In Print ![]() This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us. Table of Contents1. Introduction 2. Differentiable manifolds 3. Riemannian manifolds 4. Lie groups 5. Metrics defined by invariance properties 6. Statistics and machine learning with Geomstats 7. Conclusion 8. Acknowledgment List of Examples List of Figures Appendices ReferencesReviewsAuthor InformationTab Content 6Author Website:Countries AvailableAll regions |