Introduction to Partial Differential Equations: From Fourier Series to Boundary Value Problems

Author:   Anne Broman
Publisher:   Dover Publications Inc.
Edition:   New edition
ISBN:  

9780486661582


Pages:   192
Publication Date:   18 October 2010
Format:   Paperback
Availability:   Awaiting stock   Availability explained


Our Price $26.27 Quantity:  
Add to Cart

Share |

Introduction to Partial Differential Equations: From Fourier Series to Boundary Value Problems


Overview

Full Product Details

Author:   Anne Broman
Publisher:   Dover Publications Inc.
Imprint:   Dover Publications Inc.
Edition:   New edition
Dimensions:   Width: 14.40cm , Height: 1.00cm , Length: 20.90cm
Weight:   0.215kg
ISBN:  

9780486661582


ISBN 10:   048666158
Pages:   192
Publication Date:   18 October 2010
Audience:   College/higher education ,  Undergraduate
Format:   Paperback
Publisher's Status:   Out of Print
Availability:   Awaiting stock   Availability explained

Table of Contents

Chapter 1. Fourier series 1.1 Basic concepts 1.2 Fourier series and Fourier coefficients 1.3 A mimimizing property of the Fourier coefficients. The Riemann-Lebesgue theorem 1.4 Convergence of Fourier series 1.5 The Parseval formula 1.6 Determination of the sum of certain trigonemetric series Chapter 2. Orthogonal systems 2.1 Integration of complex-valued functions of a real variable 2.2 Orthogonal systems 2.3 Complete orthogonal systems 2.4 Integration of Fourier series 2.5 The Gram-Schmidt orthogonalization process 2.6 Sturm-Liouville problems Chapter 3. Orthogonal polynomials 3.1 The Legendre polynomials 3.2 Legendre series 3.3 The Legendre differential equation. The generating function of the Legendre polynomials 3.4 The Tchebycheff polynomials 3.5 Tchebycheff series 3.6 The Hermite polynomials. The Laguerre polynomials Chapter 4. Fourier transforms 4.1 Infinite interval of integration 4.2 The Fourier integral formula: a heuristic introduction 4.3 Auxiliary theorems 4.4 Proof of the Fourier integral formula. Fourier transforms 4.5 The convention theorem. The Parseval formula Chapter 5. Laplace transforms 5.1 Definition of the Laplace transform. Domain. Analyticity 5.2 Inversion formula 5.3 Further properties of Laplace transforms. The convolution theorem 5.4 Applications to ordinary differential equations Chapter 6. Bessel functions 6.1 The gamma function 6.2 The Bessel differential equation. Bessel functions 6.3 Some particular Bessel functions 6.4 Recursion formulas for the Bessel functions 6.5 Estimation of Bessel functions for large values of x. The zeros of the Bessel functions 6.6 Bessel series 6.7 The generating function of the Bessel functions of integral order 6.8 Neumann functions Chapter 7. Partial differential equations of first order 7.1 Introduction 7.2 The differential equation of a family of surfaces 7.3 Homogeneous differential equations 7.4 Linear and quasilinear differential equations Chapter 8. Partial differential equations of second order 8.1 Problems in physics leading to partial differential equations 8.2 Definitions 8.3 The wave equation 8.4 The heat equation 8.5 The Laplace equation Answers to exercises; Bibliography; Conventions; Symbols; Index

Reviews

Author Information

Tab Content 6

Author Website:  

Countries Available

All regions
Latest Reading Guide

NOV RG 20252

 

Shopping Cart
Your cart is empty
Shopping cart
Mailing List