|
![]() |
|||
|
||||
OverviewMachine learning is an intimidating subject until you know the fundamentals. If you understand basic coding concepts, this introductory guide will help you gain a solid foundation in machine learning principles. Using the R programming language, you'll first start to learn with regression modelling and then move into more advanced topics such as neural networks and tree-based methods. Finally, you'll delve into the frontier of machine learning, using the caret package in R. Once you develop a familiarity with topics such as the difference between regression and classification models, you'll be able to solve an array of machine learning problems. Author Scott V. Burger provides several examples to help you build a working knowledge of machine learning. Explore machine learning models, algorithms, and data training Understand machine learning algorithms for supervised and unsupervised cases Examine statistical concepts for designing data for use in models Dive into linear regression models used in business and science Use single-layer and multilayer neural networks for calculating outcomes Look at how tree-based models work, including popular decision trees Get a comprehensive view of the machine learning ecosystem in R Explore the powerhouse of tools available in R's caret package "" Full Product DetailsAuthor: Burger ScottPublisher: O'Reilly Media Imprint: O'Reilly Media Dimensions: Width: 15.00cm , Height: 1.50cm , Length: 25.00cm Weight: 0.666kg ISBN: 9781491976449ISBN 10: 1491976446 Pages: 200 Publication Date: 31 March 2018 Audience: Professional and scholarly , Professional & Vocational Format: Paperback Publisher's Status: Active Availability: In Print ![]() This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us. Table of ContentsReviewsAuthor InformationScott Burger is a senior data scientist living and working in Seattle. His programming experience comes from the realm of astrophysics, but he uses it in many different types of scenarios ranging from business intelligence to database optimizations. Scott has built a solid career on explaining terse scientific concepts to the general public and wants to use that expertise to shed light on the world of machine learning for the general R user. Tab Content 6Author Website:Countries AvailableAll regions |