|
![]() |
|||
|
||||
OverviewThis book examines infinite-equilibriums for the switching bifurcations of two 1-dimensional flows in dynamical systems. Quadratic single-linear-bivariate systems are adopted to discuss infinite-equilibriums in dynamical systems. For such quadratic dynamical systems, there are three types of infinite-equilibriums. The inflection-source and sink infinite-equilibriums are for the switching bifurcations of two parabola flows on the two-directions. The parabola-source and sink infinite-equilibriums are for the switching bifurcations of parabola and inflection flows on the two-directions. The inflection upper and lower-saddle infinite-equilibriums are for the switching bifurcation of two inflection flows in two directions. The inflection flows are for appearing bifurcations of two parabola flows on the same direction. Such switching bifurcations for 1-dimensional flow are based on the infinite-equilibriums, which will help one understand global dynamics in nonlinear dynamical systems. This book introduces infinite-equilibrium concepts and such switching bifurcations to nonlinear dynamics. Full Product DetailsAuthor: Albert LuoPublisher: Springer International Publishing AG Imprint: Springer International Publishing AG ISBN: 9783031890826ISBN 10: 3031890825 Pages: 186 Publication Date: 07 July 2025 Audience: Professional and scholarly , Professional & Vocational Format: Hardback Publisher's Status: Forthcoming Availability: Not yet available ![]() This item is yet to be released. You can pre-order this item and we will dispatch it to you upon its release. Table of ContentsReviewsAuthor InformationAlbert C. J. Luo, Distinguished Research Professor at Southern Illinois University Edwardsville. He is an internationally recognized scientist on nonlinear dynamics, discontinuous dynamical systems, nonlinear physics, and applied mathematics. His main contributions are on developing a local singularity theory for discontinuous dynamical systems, dynamical systems synchronization, generalized harmonic balance method for analytical solutions of periodic motions to chaos, implicit mapping method for semi-analytical solutions of periodic motions to chaos; a nonlinear dynamical theory for the Hilbert 16th problem; nonlinear Hamiltonian chaos. Tab Content 6Author Website:Countries AvailableAll regions |