|
![]() |
|||
|
||||
OverviewFull Product DetailsAuthor: Dietmar HildenbrandPublisher: Taylor & Francis Inc Imprint: Chapman & Hall/CRC Weight: 0.444kg ISBN: 9781498748384ISBN 10: 1498748384 Pages: 194 Publication Date: 19 July 2018 Audience: General/trade , College/higher education , General , Tertiary & Higher Education Format: Hardback Publisher's Status: Active Availability: In Print ![]() This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us. Table of ContentsReviewsThis book is a hands-on introduction to conformal geometric algebra (CGA) using the GAALOP (Geometric Algebra Algorithms Optimizer) software. It aims at quickly enabling the reader to use CGA and GAALOP for constructions with and transformations of elementary 2D geometric entities (points, lines, circles, and point pairs). Only cursory information on the underlying theory is given. Instead we find numerous code listings and figures (unfortunately also some of unsatisfactory quality). Readers who are interested in more background information to CGA computing are referred to [D. Hildenbrand, Foundations of geometric algebra computing. Berlin: Springer (2013; Zbl 1268.65038)]. Section I is a tutorial on 2D CGA (here also called Compass Ruler Algebra ) and GAALOP. Section II introduces more mathematical concepts and provides geometric interpretations of diverse CGA objects and products. In Section III the author gives application examples of CGA in robotics, image processing, or computational geometry. Even if drawing from serious scientific publications, the presentation remains at an elementary level. The end of this section also features a brief introduction to 3D CGA. The final Section IV contains thoughts on the educational values of CGA at high-school level and a reference to D. Hestenes' pioneering work on application of CGA in physics and its didactics [Space-time algebra. New York-London-Paris: Gordon and Breach Science Publishers (1966; Zbl 183.28901)]. The target audience of this book is readers who want to familiarize themselves quickly with basic concepts of CGA and the GAALOP software and don't require too much theoretical background. The provided information is sufficient for constructions and computations in elementary geometry but also for educational purposes and certain applications in engineering and computer science. -Hans-Peter Schrocker (Innsbruck) - Zentralblatt MATH 1397 - 1 This book is a hands-on introduction to conformal geometric algebra (CGA) using the GAALOP (Geometric Algebra Algorithms Optimizer) software. It aims at quickly enabling the reader to use CGA and GAALOP for constructions with and transformations of elementary 2D geometric entities (points, lines, circles, and point pairs). Only cursory information on the underlying theory is given. Instead we find numerous code listings and figures (unfortunately also some of unsatisfactory quality). Readers who are interested in more background information to CGA computing are referred to [D. Hildenbrand, Foundations of geometric algebra computing. Berlin: Springer (2013; Zbl 1268.65038)]. Section I is a tutorial on 2D CGA (here also called Compass Ruler Algebra ) and GAALOP. Section II introduces more mathematical concepts and provides geometric interpretations of diverse CGA objects and products. In Section III the author gives application examples of CGA in robotics, image processing, or computational geometry. Even if drawing from serious scientific publications, the presentation remains at an elementary level. The end of this section also features a brief introduction to 3D CGA. The final Section IV contains thoughts on the educational values of CGA at high-school level and a reference to D. Hestenes' pioneering work on application of CGA in physics and its didactics [Space-time algebra. New York-London-Paris: Gordon and Breach Science Publishers (1966; Zbl 183.28901)]. The target audience of this book is readers who want to familiarize themselves quickly with basic concepts of CGA and the GAALOP software and don't require too much theoretical background. The provided information is sufficient for constructions and computations in elementary geometry but also for educational purposes and certain applications in engineering and computer science. -Hans-Peter Schrocker (Innsbruck) - Zentralblatt MATH 1397 - 1 Author InformationDietmar Hildenbrand is a lecturer in Geometric Algebra at TU Darmstadt. Tab Content 6Author Website:Countries AvailableAll regions |