Introduction to Deep Learning: From Logical Calculus to Artificial Intelligence

Author:   Sandro Skansi
Publisher:   Springer International Publishing AG
Edition:   1st ed. 2018
ISBN:  

9783319730035


Pages:   191
Publication Date:   15 February 2018
Format:   Paperback
Availability:   Manufactured on demand   Availability explained
We will order this item for you from a manufactured on demand supplier.

Our Price $116.41 Quantity:  
Add to Cart

Share |

Introduction to Deep Learning: From Logical Calculus to Artificial Intelligence


Add your own review!

Overview

This textbook presents a concise, accessible and engaging first introduction to deep learning, offering a wide range of connectionist models which represent the current state-of-the-art. The text explores the most popular algorithms and architectures in a simple and intuitive style, explaining the mathematical derivations in a step-by-step manner. The content coverage includes convolutional networks, LSTMs, Word2vec, RBMs, DBNs, neural Turing machines, memory networks and autoencoders. Numerous examples in working Python code are provided throughout the book, and the code is also supplied separately at an accompanying website. Topics and features: introduces the fundamentals of machine learning, and the mathematical and computational prerequisites for deep learning; discusses feed-forward neural networks, and explores the modifications to these which can be applied to any neural network; examines convolutional neural networks, and the recurrent connections to a feed-forward neural network; describes the notion of distributed representations, the concept of the autoencoder, and the ideas behind language processing with deep learning; presents a brief history of artificial intelligence and neural networks, and reviews interesting open research problems in deep learning and connectionism. This clearly written and lively primer on deep learning is essential reading for graduate and advanced undergraduate students of computer science, cognitive science and mathematics, as well as fields such as linguistics, logic, philosophy, and psychology.

Full Product Details

Author:   Sandro Skansi
Publisher:   Springer International Publishing AG
Imprint:   Springer International Publishing AG
Edition:   1st ed. 2018
Weight:   0.454kg
ISBN:  

9783319730035


ISBN 10:   3319730037
Pages:   191
Publication Date:   15 February 2018
Audience:   Professional and scholarly ,  College/higher education ,  Professional & Vocational ,  Postgraduate, Research & Scholarly
Format:   Paperback
Publisher's Status:   Active
Availability:   Manufactured on demand   Availability explained
We will order this item for you from a manufactured on demand supplier.

Table of Contents

From Logic to Cognitive Science.- Mathematical and Computational Prerequisites.- Machine Learning Basics.- Feed-forward Neural Networks.- Modifications and Extensions to a Feed-forward Neural Network.- Convolutional Neural Networks.- Recurrent Neural Networks.- Autoencoders.- Neural Language Models.- An Overview of Different Neural Network Architectures.- Conclusion.

Reviews

Author Information

Dr. Sandro Skansi is an Assistant Professor of Logic at the University of Zagreb and Lecturer in Data Science at University College Algebra, Zagreb, Croatia.

Tab Content 6

Author Website:  

Customer Reviews

Recent Reviews

No review item found!

Add your own review!

Countries Available

All regions
Latest Reading Guide

MRG2025CC

 

Shopping Cart
Your cart is empty
Shopping cart
Mailing List