|
![]() |
|||
|
||||
OverviewIntersection cohomology assigns groups which satisfy a generalized form of Poincaré duality over the rationals to a stratified singular space. This monograph introduces a method that assigns to certain classes of stratified spaces cell complexes, called intersection spaces, whose ordinary rational homology satisfies generalized Poincaré duality. The cornerstone of the method is a process of spatial homology truncation, whose functoriality properties are analyzed in detail. The material on truncation is autonomous and may be of independent interest tohomotopy theorists. The cohomology of intersection spaces is not isomorphic to intersection cohomology and possesses algebraic features such as perversity-internal cup-products and cohomology operations that are not generally available for intersection cohomology. A mirror-symmetric interpretation, as well as applications to string theory concerning massless D-branes arising in type IIB theory during a Calabi-Yau conifold transition, are discussed. Full Product DetailsAuthor: Markus Banagl , BanaglPublisher: Springer-Verlag Berlin and Heidelberg GmbH & Co. KG Imprint: Springer-Verlag Berlin and Heidelberg GmbH & Co. K Edition: 2010 ed. Volume: 1997 Dimensions: Width: 15.50cm , Height: 1.20cm , Length: 23.50cm Weight: 0.760kg ISBN: 9783642125881ISBN 10: 3642125883 Pages: 224 Publication Date: 10 July 2010 Audience: Professional and scholarly , Professional & Vocational Format: Paperback Publisher's Status: Active Availability: In Print ![]() This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us. Table of ContentsHomotopy Theory.- Intersection Spaces.- String Theory.ReviewsAuthor InformationTab Content 6Author Website:Countries AvailableAll regions |