Intelligent Decision Support: Handbook of Applications and Advances of the Rough Sets Theory

Author:   Shi-Yu Huang
Publisher:   Springer
Edition:   Softcover reprint of hardcover 1st ed. 1992
Volume:   11
ISBN:  

9789048141944


Pages:   473
Publication Date:   15 December 2010
Format:   Paperback
Availability:   Out of stock   Availability explained
The supplier is temporarily out of stock of this item. It will be ordered for you on backorder and shipped when it becomes available.

Our Price $990.00 Quantity:  
Add to Cart

Share |

Intelligent Decision Support: Handbook of Applications and Advances of the Rough Sets Theory


Add your own review!

Overview

Intelligent decision support is based on human knowledge related to a specific part of a real or abstract world. When the knowledge is gained by experience, it is induced from empirical data. The data structure, called an information system, is a record of objects described by a set of attributes. Knowledge is understood here as an ability to classify objects. Objects being in the same class are indiscernible by means of attributes and form elementary building blocks (granules, atoms). In particular, the granularity of knowledge causes that some notions cannot be expressed precisely within available knowledge and can be defined only vaguely. In the rough sets theory created by Z. Pawlak each imprecise concept is replaced by a pair of precise concepts called its lower and upper approximation. These approximations are fundamental tools and reasoning about knowledge. The rough sets philosophy turned out to be a very effective, new tool with many successful real-life applications to its credit. It is worthwhile stressing that no auxiliary assumptions are needed about data, like probability or membership function values, which is its great advantage. The present book reveals a wide spectrum of applications of the rough set concept, giving the reader the flavor of, and insight into, the methodology of the newly developed disciplines. Although the book emphasizes applications, comparison with other related methods and further developments receive due attention.

Full Product Details

Author:   Shi-Yu Huang
Publisher:   Springer
Imprint:   Springer
Edition:   Softcover reprint of hardcover 1st ed. 1992
Volume:   11
Dimensions:   Width: 16.00cm , Height: 2.50cm , Length: 24.00cm
Weight:   0.753kg
ISBN:  

9789048141944


ISBN 10:   904814194
Pages:   473
Publication Date:   15 December 2010
Audience:   Professional and scholarly ,  Professional & Vocational
Format:   Paperback
Publisher's Status:   Active
Availability:   Out of stock   Availability explained
The supplier is temporarily out of stock of this item. It will be ordered for you on backorder and shipped when it becomes available.

Table of Contents

I. Applications of the rough sets approach to intelligent decision support.- 1. LERS-a system for learning from examples based on rough sets.- 2. Rough sets in computer implementation of rule-based control of industrial processes.- 3. Analysis of diagnostic symptoms in vibroacoustic diagnostics by means of the rough sets theory.- 4. Knowledge-based process control using rough sets.- 5. Acquisition of control algorithms from operation data.- 6. Rough classification of HSV patients.- 7. Surgical wound infection — conducive factors and their mutual dependencies.- 8. Fuzzy inference system based on rough sets and its application to medical diagnosis.- 9. Analysis of structure — activity relationships of quaternary ammonium compounds.- 10. Rough sets-based study of voter preference in 1988 U. S. A. presidential election.- 11. An application of rough set theory in the control of water conditions on a polder.- 12. Use of “rough sets” method to draw premonitory factors for earthquakes by emphasing gas geochemistry: the case of a low seismic activity context, in Belgium.- 13. Rough sets and some aspects of logic synthesis.- II. Comparison with related methodologies.- 1. Putting rough sets and fuzzy sets together.- 2. Applications of fuzzy-rough classifications to logics.- 3. Comparison of the rough sets approach and probabilistic data analysis techniques on a common set of medical data.- 4. Some experiments to compare rough sets theory and ordinal statistical methods.- 5. Topological and fuzzy rough sets.- 6. On convergence of rough sets.- III. Further developments.- 1. Maintenance of knowledge in dynamic information systems.- 2. The discernibility matrices and functions in information systems.- 3. Sensitivity of rough classification to changes in norms of attributes.-4. Discretization of condition attributes space.- 5. Consequence relations and information systems.- 6. Rough grammar for high performance management of processes on a distributed system.- 7. Learning classification rules from database in the context of knowledge-acquisition and -representation.- 8. ‘RoughDAS’ and ‘RoughClass’ software implementations of the rough sets approach.- Appendix: Glossary of basic concepts.

Reviews

Author Information

Tab Content 6

Author Website:  

Customer Reviews

Recent Reviews

No review item found!

Add your own review!

Countries Available

All regions
Latest Reading Guide

MRG2025CC

 

Shopping Cart
Your cart is empty
Shopping cart
Mailing List