|
![]() |
|||
|
||||
OverviewThis doctoral thesis applies measurements of ground deformation from satellite radar using their potential to play a key role in understanding volcanic and magmatic processes throughout the eruption cycle. However, making these measurements is often problematic, and the processes driving ground deformation are commonly poorly understood. These problems are approached in this thesis in the context of the Cascades Volcanic Arc. From a technical perspective, the thesis develops a new way of using regional-scale weather models to assess a priori the influence of atmospheric uncertainties on satellite measurements of volcano deformation, providing key parameters for volcano monitoring. Next, it presents detailed geodetic studies of two volcanoes in northern California: Medicine Lake Volcano and Lassen Volcanic Centre. Finally, the thesis combines geodetic constraints with petrological inputs to develop a thermal model of cooling magma intrusions. The novelty and range of topics covered in this thesis mean that it is a seminal work in volcanic and magmatic studies. Full Product DetailsAuthor: Amy Laura ParkerPublisher: Springer International Publishing AG Imprint: Springer International Publishing AG Edition: Softcover reprint of the original 1st ed. 2017 Dimensions: Width: 15.50cm , Height: 1.00cm , Length: 23.50cm Weight: 2.876kg ISBN: 9783319817996ISBN 10: 331981799 Pages: 165 Publication Date: 23 June 2018 Audience: Professional and scholarly , Professional & Vocational Format: Paperback Publisher's Status: Active Availability: Manufactured on demand ![]() We will order this item for you from a manufactured on demand supplier. Table of ContentsReviewsAuthor InformationAmy Parker is a satellite geodesist and geophysicist, whose research involves the application and interpretation of InSAR data to investigate ground deformation related to natural hazards and anthropogenic problems. She received a First Class BSc (Hons) Geophysics from the University of Liverpool (2011), and has collaborated in research projects throughout the world, including the U.S., Ethiopia, and Australia. Tab Content 6Author Website:Countries AvailableAll regions |