|
![]() |
|||
|
||||
OverviewInformation theory has proved to be effective for solving many computer vision and pattern recognition (CVPR) problems (such as image matching, clustering and segmentation, saliency detection, feature selection, optimal classifier design and many others). Nowadays, researchers are widely bringing information theory elements to the CVPR arena. Among these elements there are measures (entropy, mutual information...), principles (maximum entropy, minimax entropy...) and theories (rate distortion theory, method of types...). This book explores and introduces the latter elements through an incremental complexity approach at the same time where CVPR problems are formulated and the most representative algorithms are presented. Interesting connections between information theory principles when applied to different problems are highlighted, seeking a comprehensive research roadmap. The result is a novel tool both for CVPR and machine learning researchers, and contributes to a cross-fertilization of both areas. Full Product DetailsAuthor: Francisco Escolano , Pablo Suau , Boy N BonevPublisher: Springer Imprint: Springer Dimensions: Width: 23.40cm , Height: 2.00cm , Length: 15.60cm Weight: 0.535kg ISBN: 9781848823044ISBN 10: 1848823045 Pages: 384 Publication Date: 23 July 2009 Audience: General/trade , General Format: Undefined Publisher's Status: Unknown Availability: Out of stock ![]() Table of ContentsReviewsAuthor InformationTab Content 6Author Website:Countries AvailableAll regions |