|
![]() |
|||
|
||||
OverviewOne service mathematics has rendered the ~l moil ..., Ii j'avait su comment en revenir, je n'y serais point aUe.' human race. It has put common sense back Jules Verne where it belongs, on the topmost shelf next to the dusty canister labelled 'discarded non- The series is divergent; therefore we may be sense'. Eric T. Bell able to do something with it. O. Heaviside Mathematics is a tool for thought. A highly necessary tool in a world where both feedback and non- linearities abound. Similarly, all kinds of parts of mathematics serve as tools for other parts and for other sciences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One service topology has rendered mathematical physics ...'; 'One service logic has rendered com- puter science ...'; 'One service category theory has rendered mathematics ...'. All arguably true. And all statements obtainable this way form part of the raison d'(ftre of this series. Full Product DetailsAuthor: Dragoslav S. Mitrinovic , J. Pecaric , A.M FinkPublisher: Springer Imprint: Springer Edition: Softcover reprint of the original 1st ed. 1991 Volume: 53 Dimensions: Width: 15.50cm , Height: 3.10cm , Length: 23.50cm Weight: 0.914kg ISBN: 9789401055789ISBN 10: 9401055785 Pages: 587 Publication Date: 25 September 2012 Audience: Professional and scholarly , Professional & Vocational Format: Paperback Publisher's Status: Active Availability: Manufactured on demand ![]() We will order this item for you from a manufactured on demand supplier. Table of ContentsI. Landau-Kolmogorov and related inequalities.- II. An inequality ascribed to Wirtinger and related results.- III. Opial’s inequality.- IV. Hardy’s, Carleman’s and related inequalities.- V. Hilbert’s and related inequalities.- VI. Inequalities of Lyapunov and of De la Vallée Poussin.- VII. Zmorovi?’s and related inequalities.- VIII. Carlson’s and related inequalities.- IX. Inequalities involving kernels.- X. Convolution, rearrangement and related inequalities.- XI. Inequalities of Caplygin type.- XII. Inequalities of Gronwall type of a single variable.- XIII. Gronwall inequalities in higher dimension.- XIV. Gronwall inequalities on other spaces: discrete, functional and abstract.- XV. Integral inequalities involving functions with bounded derivatives.- XVI. Inequalities of Bernstein-Mordell type.- XVII. Methods of proofs for integral inequalities.- XVIII. Particular inequalities.- Name Index.ReviewsAuthor InformationTab Content 6Author Website:Countries AvailableAll regions |