Induction, Algorithmic Learning Theory, and Philosophy

Author:   Michèle Friend ,  Norma B. Goethe ,  Valentina S. Harizanov
Publisher:   Springer
Edition:   Softcover reprint of hardcover 1st ed. 2007
Volume:   9
ISBN:  

9789048175444


Pages:   290
Publication Date:   25 November 2010
Format:   Paperback
Availability:   Out of print, replaced by POD   Availability explained
We will order this item for you from a manufatured on demand supplier.

Our Price $498.96 Quantity:  
Add to Cart

Share |

Induction, Algorithmic Learning Theory, and Philosophy


Add your own review!

Overview

The idea of the present volume emerged in 2002 from a series of talks by Frank Stephan in 2002, and John Case in 2003, on developments of algorithmic learning theory. These talks took place in the Mathematics Department at the George Washington University. Following the talks, ValentinaHarizanovandMichèleFriendraised thepossibility ofanexchange of ideas concerning algorithmic learning theory. In particular, this was to be a mutually bene?cial exchange between philosophers, mathematicians and computer scientists. Harizanov and Friend sent out invitations for contributions and invited Norma Goethe to join the editing team. The Dilthey Fellowship of the George Washington University provided resources over the summer of 2003 to enable the editors and some of the contributors to meet in Oviedo (Spain) at the 12th International Congress of Logic, Methodology and Philosophy of Science. The editing work proceeded from there. The idea behind the volume is to rekindle interdisciplinary discussion. Algorithmic learning theory has been around for nearly half a century. The immediate beginnings can be traced back to E.M. Gold’s papers: “Limiting recursion” (1965) and “Language identi?cation in the limit” (1967). However, from a logical point of view, the deeper roots of the learni- theoretic analysis go back to Carnap’s work on inductive logic (1950, 1952).

Full Product Details

Author:   Michèle Friend ,  Norma B. Goethe ,  Valentina S. Harizanov
Publisher:   Springer
Imprint:   Springer
Edition:   Softcover reprint of hardcover 1st ed. 2007
Volume:   9
Dimensions:   Width: 15.50cm , Height: 1.60cm , Length: 23.50cm
Weight:   0.468kg
ISBN:  

9789048175444


ISBN 10:   9048175445
Pages:   290
Publication Date:   25 November 2010
Audience:   Professional and scholarly ,  Professional & Vocational
Format:   Paperback
Publisher's Status:   Active
Availability:   Out of print, replaced by POD   Availability explained
We will order this item for you from a manufatured on demand supplier.

Table of Contents

to the Philosophy and Mathematics of Algorithmic Learning Theory.- to the Philosophy and Mathematics of Algorithmic Learning Theory.- Technical Papers.- Inductive Inference Systems for Learning Classes of Algorithmically Generated Sets and Structures.- Deduction, Induction, and beyond in Parametric Logic.- How Simplicity Helps You Find the Truth without Pointing at it.- Induction over the Continuum.- Philosophy Papers.- Logically Reliable Inductive Inference.- Some Philosophical Concerns about the Confidence in ‘Confident Learning’.- How to Do Things with an Infinite Regress.- Trade-Offs.- Two Ways of Thinking about Induction.- Between History and Logic.

Reviews

Author Information

Tab Content 6

Author Website:  

Customer Reviews

Recent Reviews

No review item found!

Add your own review!

Countries Available

All regions
Latest Reading Guide

MRG2025CC

 

Shopping Cart
Your cart is empty
Shopping cart
Mailing List