|
|
|||
|
||||
OverviewThe first text to bridge the gap between image processing and jump regression analysis Recent statistical tools developed to estimate jump curves and surfaces have broad applications, specifically in the area of image processing. Often, significant differences in technical terminologies make communication between the disciplines of image processing and jump regression analysis difficult. In easy-to-understand language, Image Processing and Jump Regression Analysis builds a bridge between the worlds of computer graphics and statistics by addressing both the connections and the differences between these two disciplines. The author provides a systematic analysis of the methodology behind nonparametric jump regression analysis by outlining procedures that are easy to use, simple to compute, and have proven statistical theory behind them. Key topics include: Conventional smoothing proceduresEstimation of jump regression curvesEstimation of jump location curves of regression surfacesJump-preserving surface reconstruction based on local smoothingEdge detection in image processingEdge-preserving image restoration With mathematical proofs kept to a minimum, this book is uniquely accessible to a broad readership. It may be used as a primary text in nonparametric regression analysis and image processing as well as a reference guide for academicians and industry professionals focused on image processing or curve/surface estimation. Full Product DetailsAuthor: Peihua Qiu (University of Minnesota, Minneapolis)Publisher: Wiley-Interscience Imprint: Wiley-Interscience ISBN: 9781280276859ISBN 10: 1280276851 Pages: 340 Publication Date: 20 May 2005 Audience: General/trade , General Format: Electronic book text Publisher's Status: Active Availability: Available To Order ![]() We have confirmation that this item is in stock with the supplier. It will be ordered in for you and dispatched immediately. Table of ContentsReviewsAuthor InformationTab Content 6Author Website:Countries AvailableAll regions |