Hyperspectral Imaging: Techniques for Spectral Detection and Classification

Author:   Chein-I Chang
Publisher:   Springer Science+Business Media
Edition:   2nd 2003 ed.
ISBN:  

9780306474835


Pages:   370
Publication Date:   31 July 2003
Format:   Hardback
Availability:   Awaiting stock   Availability explained
The supplier is currently out of stock of this item. It will be ordered for you and placed on backorder. Once it does come back in stock, we will ship it out for you.

Our Price $366.96 Quantity:  
Add to Cart

Share |

Hyperspectral Imaging: Techniques for Spectral Detection and Classification


Add your own review!

Overview

Full Product Details

Author:   Chein-I Chang
Publisher:   Springer Science+Business Media
Imprint:   Kluwer Academic/Plenum Publishers
Edition:   2nd 2003 ed.
Dimensions:   Width: 15.50cm , Height: 2.30cm , Length: 23.50cm
Weight:   1.610kg
ISBN:  

9780306474835


ISBN 10:   0306474832
Pages:   370
Publication Date:   31 July 2003
Audience:   College/higher education ,  Postgraduate, Research & Scholarly
Format:   Hardback
Publisher's Status:   Active
Availability:   Awaiting stock   Availability explained
The supplier is currently out of stock of this item. It will be ordered for you and placed on backorder. Once it does come back in stock, we will ship it out for you.

Table of Contents

1. Introduction. Part I: Hyperspectral Measures. 2. Hyperspectral measures for spectral characterization. Part II: Subpixel Detection. 3. Target abundance-constrained subpixel detection. 4. Target signature-constrained subpixel detection: linearly constrained minimum variance (LCMV). 5. Automatic subpixel detection (unsupervised subpixel detection). 6. Anomaly detection. 7. Sensitivity of subpixel detection. Part III: Unconstrained Mixed Pixel Classification. 8. Unconstrained Mixed Pixel Classification: least squares subspace projection. 9. A quantitative analysis of mixed-to-pure pixel conversion. Part IV: Constrained Mixed Pixel Classification. 10. Target abundance-constrained mixed pixel classification (TACMPC). 11. Target signature-constrained mixed pixel classification (TSCMPC): LCMV multiple target classifiers. 12. Signature-constrained mixed pixel classification (TSCMPC): Linearly constrained discriminant analysis (LCDA). Part V: Automatic Mixed Pixel Classification (AMPC). 13. Automatic mixed pixel classification (AMPC): unsupervised mixed pixel classification. 14. Automatic mixed pixel classification (AMPC): anomaly classification. 15. Automatic mixed pixel classification (AMPC): linear spectral random mixture analysis (LSRMA). 16. Automatic mixed pixel classification (AMPC): projection pursuit. 17. Estimation of virtual dimensionality of hyperspectral imagery. 18. Conclusion and further techniques. Glossary. References. Index.

Reviews

Author Information

Tab Content 6

Author Website:  

Customer Reviews

Recent Reviews

No review item found!

Add your own review!

Countries Available

All regions
Latest Reading Guide

MRG2025CC

 

Shopping Cart
Your cart is empty
Shopping cart
Mailing List