|
![]() |
|||
|
||||
OverviewHydrogels are attractive materials for uses in regenerative medicine due to their biocompatibility and high water absorbance and retention properties. Applications are emerging in stem cell niches, biopolymers and synthetic polymers for tissue scaffolding, wound healing and hydrogels for cellular diagnostics and delivery. Hydrogels in Cell-Based Therapies looks at the use of different polymers and other bionanomaterials to fabricate different hydrogel systems and their biomedical applications including enzyme responsive hydrogels and biomaterials, thermally responsive hydrogels, collagen gels and alginates. With complementary expertise in cell biology and soft materials, the Editors provide a comprehensive overview of recent updates in this highly topical field. This highly interdisciplinary subject will appeal to researchers in cell biology, biochemistry, biomaterials and polymer science and those interested in hydrogel applications. Full Product DetailsAuthor: Che J. Connon , Ian W. Hamley , Ian W. Hamley , William L. MurphyPublisher: Royal Society of Chemistry Imprint: Royal Society of Chemistry Volume: 2 ISBN: 9781782621263ISBN 10: 1782621261 Pages: 238 Publication Date: 18 March 2014 Audience: Professional and scholarly , Professional & Vocational Format: Electronic book text Publisher's Status: Active Availability: In Print ![]() This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us. Table of ContentsReviewsAuthor InformationIan W. Hamley is Diamond Professor of Physical Chemistry at the University of Reading, UK and holds a Royal Society-Wolfson Research Merit Award. He has previously authored three books on soft matter and block copolymers and edited two texts. His research interests are focussed on soft materials including polymers, colloids and biomaterials. Che Connon is Reader in Tissue Engineering and Cell Therapy. His research focus is primarily in the area of corneal tissue engineering, seeking to engineer functional replacement and temporary 'bridge' tissues while also developing model systems to study physiological and pathophysiological corneal tissue formation. Tab Content 6Author Website:Countries AvailableAll regions |