|
![]() |
|||
|
||||
OverviewThis book proposes soft computing techniques for segmenting real-life images in applications such as image processing, image mining, video surveillance, and intelligent transportation systems. The book suggests hybrids deriving from three main approaches: fuzzy systems, primarily used for handling real-life problems that involve uncertainty; artificial neural networks, usually applied for machine cognition, learning, and recognition; and evolutionary computation, mainly used for search, exploration, efficient exploitation of contextual information, and optimization. The contributed chapters discuss both the strengths and the weaknesses of the approaches, and the book will be valuable for researchers and graduate students in the domains of image processing and computational intelligence. Full Product DetailsAuthor: Siddhartha Bhattacharyya , Paramartha Dutta , Sourav De , Goran KlepacPublisher: Springer International Publishing AG Imprint: Springer International Publishing AG Edition: Softcover reprint of the original 1st ed. 2016 Dimensions: Width: 15.50cm , Height: 1.80cm , Length: 23.50cm Weight: 5.153kg ISBN: 9783319836843ISBN 10: 3319836846 Pages: 321 Publication Date: 29 June 2018 Audience: Professional and scholarly , Professional & Vocational Format: Paperback Publisher's Status: Active Availability: Manufactured on demand ![]() We will order this item for you from a manufactured on demand supplier. Table of ContentsHybrid Soft Computing Techniques for Image Segmentation: Fundamentals and Applications.- Enhanced Rough-Fuzzy C-Means Algorithm for Image Segmentation.- Intuitionistic Fuzzy C-means Clustering Algorithm for Brain Image Segmentation.- Automatic Segmentation Approaches.- Modified Level Set Segmentation.- Fuzzy Deformable Models for 3D Segmentation of Brain Structures.- Rough Sets for Probabilistic Model Based Image Segmentation.- Segmentation of Cerebral Images.ReviewsAuthor InformationTab Content 6Author Website:Countries AvailableAll regions |