How to Count: An Introduction to Combinatorics, Second Edition

Author:   R.B.J.T. Allenby ,  Alan Slomson
Publisher:   Taylor & Francis Ltd
Edition:   2nd edition
Volume:   v. 60
ISBN:  

9781420082609


Pages:   446
Publication Date:   12 August 2010
Replaced By:   9781138093881
Format:   Hardback
Availability:   In Print   Availability explained
This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us.

Our Price $124.00 Quantity:  
Add to Cart

Share |

How to Count: An Introduction to Combinatorics, Second Edition


Add your own review!

Overview

Suitable for self-study or a first course in combinatorics at the undergraduate level, How to Count: An Introduction to Combinatorics, Second Edition follows a similar approach to its predecessor. This second edition continues to focus on counting problems and emphasize a problem solving approach. It includes a new chapter on graph theory and many more exercises, some with full solutions or hints. The authors provide proofs of all significant results and illustrate applications from other areas of mathematics, such as elementary ideas from analysis in proving Stirling's formula. A solutions manual is available for qualifying instructors.

Full Product Details

Author:   R.B.J.T. Allenby ,  Alan Slomson
Publisher:   Taylor & Francis Ltd
Imprint:   Chapman & Hall/CRC
Edition:   2nd edition
Volume:   v. 60
Dimensions:   Width: 17.80cm , Height: 2.50cm , Length: 25.40cm
Weight:   0.964kg
ISBN:  

9781420082609


ISBN 10:   1420082604
Pages:   446
Publication Date:   12 August 2010
Audience:   College/higher education ,  Undergraduate
Replaced By:   9781138093881
Format:   Hardback
Publisher's Status:   Active
Availability:   In Print   Availability explained
This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us.

Table of Contents

Reviews

! thoughtfully written, contain[s] plenty of material and exercises ! very readable and useful ! --MAA Reviews, February 2011 The reasons I adopted this book are simple: it's the best one-volume book on combinatorics for undergraduates. It begins slowly and gently, but does not avoid subtleties or difficulties. It includes the right mixture of topics without bloat, and always with an eye to good mathematical taste and coherence. Enumerative combinatorics is developed rather fully, through Stirling and Catalan numbers, for example, before generating functions are introduced. Thus this tool is very much appreciated and its 'naturalness' is easier to comprehend. Likewise, partitions are introduced in the absence of generating functions, and then later generating functions are applied to them: again, a wise pedagogical move. The ordering of chapters is nicely set up for two different single-semester courses: one that uses more algebra, culminating in Polya's counting theorem; the other concentrating on graph theory, ending with a variety of Ramsey theory topics. ! I was very much impressed with the first edition when I encountered it in 1994. I like the second edition even more. ! --Paul Zeitz, University of San Francisco, California, USA


The reasons I adopted this book are simple: it's the best one-volume book on combinatorics for undergraduates. It begins slowly and gently, but does not avoid subtleties or difficulties. It includes the right mixture of topics without bloat, and always with an eye to good mathematical taste and coherence. Enumerative combinatorics is developed rather fully, through Stirling and Catalan numbers, for example, before generating functions are introduced. Thus this tool is very much appreciated and its 'naturalness' is easier to comprehend. Likewise, partitions are introduced in the absence of generating functions, and then later generating functions are applied to them: again, a wise pedagogical move. The ordering of chapters is nicely set up for two different single-semester courses: one that uses more algebra, culminating in Polya's counting theorem; the other concentrating on graph theory, ending with a variety of Ramsey theory topics. ! I was very much impressed with the first edition when I encountered it in 1994. I like the second edition even more. ! --Paul Zeitz, University of San Francisco, California, USA


Author Information

Alan Slomson taught mathematics at the University of Leeds from 1967 to 2008. He is currently the secretary of the United Kingdom Mathematics Trust. R.B.J.T. Allenby taught mathematics at the University of Leeds from 1965 to 2007.

Tab Content 6

Author Website:  

Customer Reviews

Recent Reviews

No review item found!

Add your own review!

Countries Available

All regions
Latest Reading Guide

MRG2025CC

 

Shopping Cart
Your cart is empty
Shopping cart
Mailing List