High-Dimensional and Low-Quality Visual Information Processing: From Structured Sensing and Understanding

Author:   Yue Deng
Publisher:   Springer-Verlag Berlin and Heidelberg GmbH & Co. KG
Edition:   2015 ed.
ISBN:  

9783662445259


Pages:   99
Publication Date:   18 September 2014
Format:   Hardback
Availability:   Manufactured on demand   Availability explained
We will order this item for you from a manufactured on demand supplier.

Our Price $145.17 Quantity:  
Add to Cart

Share |

High-Dimensional and Low-Quality Visual Information Processing: From Structured Sensing and Understanding


Add your own review!

Overview

This thesis primarily focuses on how to carry out intelligent sensing and understand the high-dimensional and low-quality visual information. After exploring the inherent structures of the visual data, it proposes a number of computational models covering an extensive range of mathematical topics, including compressive sensing, graph theory, probabilistic learning and information theory. These computational models are also applied to address a number of real-world problems including biometric recognition, stereo signal reconstruction, natural scene parsing, and SAR image processing.

Full Product Details

Author:   Yue Deng
Publisher:   Springer-Verlag Berlin and Heidelberg GmbH & Co. KG
Imprint:   Springer-Verlag Berlin and Heidelberg GmbH & Co. K
Edition:   2015 ed.
Dimensions:   Width: 15.50cm , Height: 0.80cm , Length: 23.50cm
Weight:   0.348kg
ISBN:  

9783662445259


ISBN 10:   3662445255
Pages:   99
Publication Date:   18 September 2014
Audience:   Professional and scholarly ,  Professional & Vocational
Format:   Hardback
Publisher's Status:   Active
Availability:   Manufactured on demand   Availability explained
We will order this item for you from a manufactured on demand supplier.

Table of Contents

Introduction.- Sparse Structure for Visual Signal Sensing.- Graph Structure for Visual Signal Sensing.- Discriminative Structure for Visual Signal Understanding.- Information Theoretic Structure for Visual Signal Understanding.- Conclusions.

Reviews

Author Information

Bio Yue Deng received the B.E. degree (Hons.) in automatic control from Southeast University, Nanjing, China, in 2008 and Ph.D. degree (Hons.) in control science from the Department of Automation, Tsinghua University, Beijing, China, in 2013. He was a Visiting Scholar with the School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, from 2010 to 2011. He is currently an Associate Professor with the School of Electronic Science and Engineering, Nanjing University, Nanjing, China. Zhang,""Graph Dr. Deng’s current research interests include computer vision, machine learning and computational biology. He is the first author of more than 10 papers published on the worldwide reputable journals and conferences. He was a recipient of the Microsoft global fellowship for young computer scientist in 2010, National Ph.D Scholarship in 2012, best control award of International Air Robotic competition in 2012. His dissertation was nominated as the outstanding Ph.D thesis by Tsinghua University in 2013. Honors: • Outstanding Ph.D thesis award of Tsinghua University, 2013 • Best Control Award of International Aerial Robotic Competition, 2012 • National Ph.D Fellowship, 2012 • First Class Scholarship of Tsinghua University, 2012 • Microsoft Global Fellowship for young Computer Scientist, 2010. • First class award in Tsinghua-UC, Berkeley Global Technical Challenge Competition, 2010. • Rockwell Global Scholarship, 2006. Publications: • Yue Deng, Q. Dai, R. Liu, Z. Zhang and S.Hu, ""Low-Rank Structure Learning via Non-convex Heuristic Recovery"", IEEE Transactions on Neural Network and Learning Systems, March, Pages 383-396, 2013 (Spotlight Paper) • Yue Deng, Y. Liu, Q. Dai, Z. Zhang and Y. Wang, ""Noisy Depth Maps Fusion for Multiview Stereo Via Matrix Completion"", IEEE Journal of Selected Topics in Signal Processing, (IEEE J-STSP) Sep. Issue, 2012. • Yue Deng, Q. Dai and Z. Zhang, ""Graph Laplace for Partially Occluded Face Completion and Recognition"", IEEE Transactions on Image Processing, (IEEE TIP) vol.20(8), 2329-2338, 2011. • Yue Deng, Y. Zhao, Y.Liu and Q. Dai ""Differences Help Recognition: A Probabilistic Interpretation"", Plos ONE, 2013. • Yue Deng, Q. Dai, R. Wang and Z. Zhang, ""Commute Time Guided Transformation for Feature Extraction"", Computer Vision and Image Understanding Vol. 116, Issue 4, April, Pages 473-483,2012. • Yue Deng, and Q. Dai, ""An Overview of Computational Sparse Models and Their Applications in Artificial Intelligence"", Artificial Intelligence Book, Springer, 2012. (book chapter) • Yue Deng, Y. Qian, Y. Li and Q. Dai, ""Visual Words Assignment on A graph via Minimal Information Loss"", British Machine Vision Conference (BMVC), 2012. • Yue Deng, D. Li, X. Xie, K. Lam and Q. Dai, ""Partially Occluded Face Completion and Recognition"", IEEE International Conference on Image Processing (ICIP), 2009. • Yue Deng, Q. Dai and Z. Zhang, ""Feature extraction using randomwalks"", IEEE Youth Conference on Information, Computing and Telecommunication, 2009. YC-ICT’09. IEEE, 2009. • Genzhi Ye, Yebin Liu, Yue Deng, Nils Hasler, Xiangyang Ji, Qionghai Dai, Christian Theobalt, Free-viewpoint Video of Human Actors using Multiple Handheld Kinects, in IEEE Trans. Cybernetics, VOL. 43, NO. 5, 2013.

Tab Content 6

Author Website:  

Customer Reviews

Recent Reviews

No review item found!

Add your own review!

Countries Available

All regions
Latest Reading Guide

MRG2025CC

 

Shopping Cart
Your cart is empty
Shopping cart
Mailing List