|
![]() |
|||
|
||||
OverviewThis book aims to present a comprehensive, self-contained, and concise overview of extreme value theory for time series, incorporating the latest research trends alongside classical methodology. Appropriate for graduate coursework or professional reference, the book requires a background in extreme value theory for i.i.d. data and basics of time series. Following a brief review of foundational concepts, it progresses linearly through topics in limit theorems and time series models while including historical insights at each chapter’s conclusion. Additionally, the book incorporates complete proofs and exercises with solutions as well as substantive reference lists and appendices, featuring a novel commentary on the theory of vague convergence. Full Product DetailsAuthor: Rafal Kulik , Philippe SoulierPublisher: Springer-Verlag New York Inc. Imprint: Springer-Verlag New York Inc. Edition: 1st ed. 2020 Weight: 1.341kg ISBN: 9781071607350ISBN 10: 1071607359 Pages: 681 Publication Date: 02 July 2020 Audience: Professional and scholarly , Professional & Vocational Format: Hardback Publisher's Status: Active Availability: Manufactured on demand ![]() We will order this item for you from a manufactured on demand supplier. Table of ContentsReviewsAuthor InformationRafal Kulik graduated from the University of Wroclaw, Poland. He is currently a Professor at the Department of Mathematics and Statistics, University of Ottawa. His research interests are centered around limit theorems for stochastic processes with temporal dependence. Philippe Soulier graduated from Ecole Normale Supérieure de Paris and obtained his PhD at University Paris XI Orsay. He is Professor of Mathematics at University Paris Nanterre. His main themes of research are long memory processes and extreme value theory. Tab Content 6Author Website:Countries AvailableAll regions |