Heating, Ventilating, and Air Conditioning: Analysis and Design

Author:   Faye C. McQuiston (Oklahoma State University) ,  Jerald D. Parker (Oklahoma Christian University of Science and Arts) ,  Jeffrey D. Spitler (Oklahoma State University) ,  Hessam Taherian (Penn State Harrisburg)
Publisher:   John Wiley & Sons Inc
Edition:   7th edition
ISBN:  

9781119894148


Pages:   640
Publication Date:   09 August 2023
Format:   Hardback
Availability:   Out of stock   Availability explained
The supplier is temporarily out of stock of this item. It will be ordered for you on backorder and shipped when it becomes available.

Our Price $207.95 Quantity:  
Add to Cart

Share |

Heating, Ventilating, and Air Conditioning: Analysis and Design


Add your own review!

Overview

Heating, Ventilating, and Air Conditioning The authoritative resource providing coverage of all aspects of HVAC, fully updated to align with the latest HVAC technologies and methods Now in its Seventh Edition, Heating, Ventilating, and Air Conditioning has been fully updated to align with the latest technologies and industry developments while maintaining the balance of theoretical information with practical applications that has prepared many generations of students for their careers. As they work through the book, students will become familiar with different types of heating and air conditioning systems and equipment, understand processes and concepts involving moist atmospheric air, learn how to provide comfort to occupants in controlled spaces, and gain practice calculating probable heat loss/gain and energy requirements. A companion website includes additional multiple-choice questions, tutorial videos showing problem-solving for R-value calculation, and Excel spreadsheets that can be used for practice calculations. The Seventh Edition includes new coverage of ductless A/C systems, heat exchangers and hybrid heat pumps, geothermal heat pumps, energy-efficient equipment, and UV principles of air quality treatment of airborne viruses like COVID-19. Heating, Ventilating, and Air Conditioning includes detailed coverage of topics such as: Common HVAC units and dimensions, fundamental physical concepts, and system selection and arrangement Types of all-air systems, air-and-water systems, all-water systems, and decentralized cooling and heating Moist air and the standard atmosphere, fundamental parameters, adiabatic saturation, and wet bulb temperature and the psychrometric chart Outdoor and indoor design conditions, transmission heat losses, infiltration, heat losses from air ducts, auxiliary heat sources, and intermittently heated structures Heat gain, cooling load, and heat extraction rate, and application of cooling load calculation procedures Selection of pumps and fans, and duct HVAC sizing Heating, Ventilating, and Air Conditioning helps prepare students for the industry by connecting the content to ASHRAE standards and by introducing coverage of software tools commonly used in HVAC design. The text is suitable for one- or two-semester HVAC courses taught at junior to graduate levels in various engineering departments.

Full Product Details

Author:   Faye C. McQuiston (Oklahoma State University) ,  Jerald D. Parker (Oklahoma Christian University of Science and Arts) ,  Jeffrey D. Spitler (Oklahoma State University) ,  Hessam Taherian (Penn State Harrisburg)
Publisher:   John Wiley & Sons Inc
Imprint:   John Wiley & Sons Inc
Edition:   7th edition
Dimensions:   Width: 18.00cm , Height: 3.10cm , Length: 25.20cm
Weight:   1.134kg
ISBN:  

9781119894148


ISBN 10:   111989414
Pages:   640
Publication Date:   09 August 2023
Audience:   Professional and scholarly ,  Professional & Vocational
Format:   Hardback
Publisher's Status:   Active
Availability:   Out of stock   Availability explained
The supplier is temporarily out of stock of this item. It will be ordered for you on backorder and shipped when it becomes available.

Table of Contents

About the Companion Website xi 1. Introduction 1 1.1 Historical Notes 2 1.2 Common HVAC Units and Dimensions 3 1.3 Fundamental Physical Concepts 6 1.4 Additional Comments 18 References 19 Problems 19 2. Air-Conditioning Systems 22 2.1 The Complete System 22 2.2 System Selection and Arrangement 24 2.3 HVAC Components and Distribution Systems 27 2.4 Types of All-Air Systems 28 2.5 Air-and-Water Systems 35 2.6 All-Water Systems 37 2.7 Decentralized Cooling and Heating 38 2.8 Heat Pump Systems 41 2.9 Heat Recovery Systems 43 2.10 Thermal Energy Storage 44 References 45 Problems 46 3. Moist Air Properties and Conditioning Processes 49 3.1 Moist Air and The Standard Atmosphere 49 3.2 Fundamental Parameters 51 3.3 Adiabatic Saturation 53 3.4 Wet Bulb Temperature and the Psychrometric Chart 55 3.5 Classic Moist Air Processes 57 3.6 Space Air Conditioning—Design Conditions 66 3.7 Space Air Conditioning—Off-Design Conditions 77 References 81 Problems 81 4. Comfort and Health—Indoor Environmental Quality 86 4.1 Comfort—Physiological Considerations 87 4.2 Environmental Comfort Indices 87 4.3 Comfort Conditions 91 4.4 The Basic Concerns of IAQ 93 4.5 Common Contaminants 94 4.6 Methods to Control Humidity 96 4.7 Methods to Control Contaminants 98 References 116 Problems 116 5. Heat Transmission in Building Structures 120 5.1 Basic Heat-Transfer Modes 120 5.2 Tabulated Overall Heat-Transfer Coefficients 139 5.3 Moisture Transmission 154 References 155 Problems 155 6. Space Heating Load 159 6.1 Outdoor Design Conditions 159 6.2 Indoor Design Conditions 160 6.3 Transmission Heat Losses 161 6.4 Infiltration 161 6.5 Heat Losses from Air Ducts 174 6.6 Auxiliary Heat Sources 176 6.7 Intermittently Heated Structures 176 6.8 Supply Air for Space Heating 176 6.9 Source Media for Space Heating 177 6.10 Computer Calculation of Heating Loads 178 References 179 Problems 180 7. Solar Radiation 182 7.1 Thermal Radiation 182 7.2 The Earth’s Motion About the Sun 185 7.3 Time 186 7.4 Solar Angles 188 7.5 Solar Irradiation 191 7.6 Heat Gain Through Fenestrations 198 7.7 Energy Calculations 213 References 214 Problems 214 8. The Cooling Load 217 8.1 Heat Gain, Cooling Load, and Heat Extraction Rate 217 8.2 Application of Cooling Load Calculation Procedures 220 8.3 Design Conditions 221 8.4 Internal Heat Gains 222 8.5 Overview of the Heat Balance Method 226 8.6 Transient Conduction Heat Transfer 228 8.7 Outside Surface Heat Balance—Opaque Surfaces 232 8.8 Fenestration—Transmitted Solar Radiation 238 8.9 Interior Surface Heat Balance—Opaque Surfaces 240 8.10 Surface Heat Balance—Transparent Surfaces 246 8.11 Zone Air Heat Balance 250 8.12 Implementation of the Heat Balance Method 255 8.13 Radiant Time Series Method 256 8.14 Implementation of the Radiant Time Series Method 266 8.15 Supply Air Quantities 273 References 273 Problems 275 9. Energy Calculations and Building Simulation 279 9.1 Degree-Day Procedure 279 9.2 Bin Method 282 9.3 Comprehensive Simulation Methods 287 9.4 Energy Calculation Tools 293 9.5 Other Aspects of Building Simulation 294 References 294 Problems 297 10. Flow, Pumps, and Piping Design 298 10.1 Fluid Flow Basics 298 10.2 Centrifugal Pumps 309 10.3 Combined System and Pump Characteristics 313 10.4 Piping System Fundamentals 317 10.5 System Design 335 10.6 Steam Heating Systems 343 References 356 Problems 357 11. Space Air Diffusion 363 11.1 Behavior of Jets 363 11.2 Air-Distribution System Design 371 References 388 Problems 388 12. Fans and Building Air Distribution 391 12.1 Fans 391 12.2 Fan Relations 391 12.3 Fan Performance and Selection 396 12.4 Fan Installation 403 12.5 Field Performance Testing 410 12.6 Fans and Variable-Air-Volume Systems 412 12.7 Air Flow in Ducts 414 12.8 Air Flow in Fittings 421 12.9 Accessories 434 12.10 Duct Design—General 435 12.11 Duct Design—Sizing 440 References 450 Problems 450 13. Direct Contact Heat and Mass Transfer 456 13.1 Combined Heat and Mass Transfer 456 13.2 Spray Chambers 459 13.3 Cooling Towers 467 References 474 Problems 475 14. Extended Surface Heat Exchangers 477 14.1 The Log Mean Temperature Difference (LMTD) Method 478 14.2 The Number of Transfer Units (NTU) Method 479 14.3 Heat Transfer—Single-Component Fluids 480 14.4 Transport Coefficients Inside Tubes 487 14.5 Transport Coefficients Outside Tubes and Compact Surfaces 492 14.6 Design Procedures for Sensible Heat Transfer 498 14.7 Combined Heat and Mass Transfer 509 References 520 Problems 520 15. Refrigeration 524 15.1 The Performance of Refrigeration Systems 524 15.2 The Theoretical Single-Stage Compression Cycle 526 15.3 Refrigerants 529 15.4 Refrigeration Equipment Components 535 15.5 The Real Single-Stage Cycle 549 15.6 Absorption Refrigeration 555 15.7 The Theoretical Absorption Refrigeration System 565 15.8 The Aqua–Ammonia Absorption System 567 15.9 The Lithium Bromide–Water System 571 References 574 Problems 574 Appendix A. Thermophysical Properties 577 Table A.1a Properties of Refrigerant 718 (Water–Steam)—English Units 578 Table A.1b Properties of Refrigerant 718 (Water–Steam)—SI Units 579 Table A.2a Properties of Refrigerant 134a (1,1,1,2 Tetrafluoroethane)—English Units 580 Table A.2b Properties of Refrigerant 134a (1,1,1,2-Tetrafluoroethane)—SI Units 582 Table A.3a Properties of Refrigerant 22 (Chlorodifluoromethane)—English Units 584 Table A.3b Properties of Refrigerant 22 (Chlorodifluoromethane)—SI Units 586 Table A.4a Air—English Units 588 Table A.4b Air—SI Units 589 Appendix B. Weather Data 590 Table B.1a Heating and Cooling Design Conditions—United States, Canada, and the World—English Units 591 Table B.1b Heating and Cooling Design Conditions—United States, Canada, and World—SI Units 594 Table B.2 Annual Bin Weather Data for Oklahoma City, Oklahoma, 35 24 N, 97 36 W, 1285 ft Elevation 597 Table B.3 Annual Bin Weather Data for Chicago, Illinois, 41 47 N, 87 45 W, 607 ft Elevation 597 Table B.4 Annual Bin Weather Data for Denver, Colorado, 39 45 N, 104 52 W, 5283 ft Elevation 598 Table B.5 Annual Bin Weather Data for Washington, D.C., 38 51 N, 77 02 W, 14 ft Elevation 598 Appendix C. Pipe and Tube Data 599 Table C.1 Steel Pipe Dimensions—English and SI Units 600 Table C.2 Type L Copper Tube Dimensions—English and SI Units 601 Appendix D. Useful Data 602 Table D.1 Conversion Factors 603 Appendix E. Charts 605 Chart 1a ASHRAE psychrometric chart no. 1 (IP) (Reprinted by permission of ASHRAE.) 606 Chart 1b ASHRAE psychrometric chart no. 1 (SI) (Reprinted by permission of ASHRAE.) 607 Chart 1Ha ASHRAE psychrometric chart no. 4 (IP) (Reprinted by permission of ASHRAE.) 608 Chart 1Hb ASHRAE psychrometric chart no. 6 (SI) (Reprinted by permission of ASHRAE.) 609 Chart 2 Enthalpy–concentration diagram for ammonia–water solutions (From Unit Operations by G. G. Brown, Copyright © 1951 by John Wiley & Sons, Inc.) 610 Chart 3 Pressure–enthalpy diagram for refrigerant 134a (Reprinted by permission.) 611 Chart 4 Pressure–enthalpy diagram for refrigerant 22 (Reprinted by permission.) 612 Chart 5 Enthalpy–concentration diagram for Lithium Bromide–water solutions (Courtesy of Institute of Gas Technology, Chicago IL.) 613 Chart 6 Pressure-Enthalpy Diagram for Freon™ 407C (SI Units). Courtesy of Chemours 614 Chart 7 Pressure-Enthalpy Diagram for Freon™ 407A (SI Units). Courtesy of Chemours 615 Chart 8 Pressure-Enthalpy Diagram for Freon™ 410A (SI Units). Courtesy of Chemours 616 Index 617

Reviews

Author Information

The late Faye C. McQuiston was Professor Emeritus of Mechanical and Aerospace Engineering at Oklahoma State University. The late Jerald D. Parker was Professor Emeritus at Oklahoma Christian University who also spent 33 years on the faculty at Oklahoma State University. Jeffrey D. Spitler is Regents Professor and OG&E Energy Technology Chair in the School of Mechanical and Aerospace Engineering at Oklahoma State University. Hessam Taherian is Assistant Teaching Professor at Penn State Harrisburg.

Tab Content 6

Author Website:  

Customer Reviews

Recent Reviews

No review item found!

Add your own review!

Countries Available

All regions
Latest Reading Guide

wl

Shopping Cart
Your cart is empty
Shopping cart
Mailing List