|
![]() |
|||
|
||||
OverviewThis book constitutes the First 3D Head and Neck Tumor Segmentation in PET/CT Challenge, HECKTOR 2020, which was held in conjunction with the 23rd International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2020, in Lima, Peru, in October 2020. The challenge took place virtually due to the COVID-19 pandemic.The 2 full and 8 short papers presented together with an overview paper in this volume were carefully reviewed and selected form numerous submissions. This challenge aims to evaluate and compare the current state-of-the-art methods for automatic head and neck tumor segmentation. In the context of this challenge, a dataset of 204 delineated PET/CT images was made available for training as well as 53 PET/CT images for testing. Various deep learning methods were developed by the participants with excellent results. Full Product DetailsAuthor: Vincent Andrearczyk , Valentin Oreiller , Adrien DepeursingePublisher: Springer Nature Switzerland AG Imprint: Springer Nature Switzerland AG Edition: 1st ed. 2021 Volume: 12603 Weight: 0.454kg ISBN: 9783030671938ISBN 10: 3030671933 Pages: 109 Publication Date: 13 January 2021 Audience: Professional and scholarly , Professional & Vocational Format: Paperback Publisher's Status: Active Availability: Manufactured on demand ![]() We will order this item for you from a manufactured on demand supplier. Table of ContentsOverview of the HECKTOR Challenge at MICCAI 2020: Automatic Head and Neck Tumor Segmentation in PET/CT.- Two-stage approach for segmenting gross tumor volume in head and neck cancer with CT and PET imaging.- The Head and Neck Tumor Segmentation Using nnU-Net with Spatial and Channel 'Squeeze & Excitation' Blocks.- Squeeze-and-Excitation Normalization for Automated Delineation of Head and Neck Primary Tumors in Combined PET and CT Images.- Automatic Head and Neck Tumor Segmentation in PET/CT with Scale Attention Network.- Iteratively Refine the Segmentation of Head and Neck Tumor in FDG-PET and CT images.- Combining CNN and Hybrid Active Contours for Head and Neck Tumor Segmentation in CT and PET images.- Oropharyngeal Tumour Segmentation using Ensemble 3D PET-CT Fusion Networks for the HECKTOR Challenge.- Patch-based 3D UNet for Head and Neck Tumor Segmentation with an Ensemble of Conventional and Dilated Convolutions.- Tumor Segmentation in Patients with Head and Neck Cancers using Deep Learning based-on Multi-modality PET/CT Images.- GAN-based Bi-modal Segmentation using Mumford-Shah Loss: Application to Head and Neck Tumors in PET-CT Images.ReviewsAuthor InformationTab Content 6Author Website:Countries AvailableAll regions |