|
![]() |
|||
|
||||
OverviewFull Product DetailsAuthor: Bozzano G Luisa , P. M. Gruber , Jorg M. WillsPublisher: Elsevier Science & Technology Imprint: North-Holland Dimensions: Width: 17.80cm , Height: 4.30cm , Length: 25.40cm Weight: 1.610kg ISBN: 9780444895967ISBN 10: 0444895965 Pages: 801 Publication Date: 24 August 1993 Audience: Professional and scholarly , Professional & Vocational Format: Hardback Publisher's Status: Out of Print Availability: In Print ![]() Limited stock is available. It will be ordered for you and shipped pending supplier's limited stock. Table of ContentsVOLUME A. Preface. History of Convexity (P.M. Gruber). Part 1: Classical Convexity. Characterizations of convex sets (P. Mani-Levitska). Mixed volumes (J.R. Sangwine-Yager). The standard isoperimetric theorem (G. Talenti). Stability of geometric inequalities (H. Groemer). Selected affine isoperimetric inequalities (E. Lutwak). Extremum problems for convex discs and polyhedra (A. Florian). Rigidity (R. Connelly). Convex surfaces, curvature and surface area measures (R. Schneider). The space of convex bodies (P.M. Gruber). Aspects of approximation of convex bodies (P.M. Gruber). Special convex bodies (E. Heil, H. Martini). Part 2: Combinatorial Aspects of Convexity. Helly, Radon, and Carathéodory type theorems (J. Eckhoff). Problems in discrete and combinatorial geometry (P. Schmitt). Combinatorial aspects of convex polytopes (M.M. Bayer, C.W. Lee). Polyhedral manifolds (U. Brehm, J.M. Wills). Oriented matroids (J. Bokowski). Algebraic geometry and convexity (G. Ewald). Mathematical programming and convex geometry (P. Gritzmann, V. Klee). Convexity and discrete optimization (R.E. Burkard). Geometric algorithms (H. Edelsbrunner). Author Index. Subject Index.ReviewsAuthor InformationTab Content 6Author Website:Countries AvailableAll regions |