|
|
|||
|
||||
OverviewAuf vielfachen Wunsch liegt jetzt die zweite, verbesserte Auflage des Band 1 des zweibändigen Lehrbuchs Höhere Mathematik vor. Neben dem üblichen Vorlesungsstoff bieten die Autoren auch weiterführende Anregungen. So gehen sie u.a. auf numerische Aspekte ein (eingefügte Programme, die auf erprobten Algorithmen beruhen). Der erste Band umfaßt neben Differential- und Integralrechnung für Funktionen in einer und mehreren reellen Variablen auch Vektoranalyis, Integralsätze und die n-dimensionale Vektor- und Matrizenrechnung. Eine Fülle eindrucksvoller Abbildungen, praxisbezogener Beispiele und Übungsaufgaben tragen zu Anschaulichkeit bei. Besonders gekennzeichnete Zusammenfassungen mit detaillierten Rechenschemata eignen sich hervorragend zur Prüfungsvorbereitung. Mit diesem zweibändigen Werk liegt nicht nur eine kompakte und umfassende Einführung in die Höhere Mathematik vor, sondern gleichzeitig auch ein Nachschlagewerk für Praktiker. Full Product DetailsAuthor: Kurt Meyberg , Peter VachenauerPublisher: Springer-Verlag Berlin and Heidelberg GmbH & Co. KG Imprint: Springer-Verlag Berlin and Heidelberg GmbH & Co. K Edition: 2. Auflage 1993 Dimensions: Width: 15.50cm , Height: 2.80cm , Length: 23.50cm Weight: 0.836kg ISBN: 9783540531906ISBN 10: 3540531904 Pages: 529 Publication Date: 09 September 1993 Audience: Professional and scholarly , Professional & Vocational Replaced By: 9783540591887 Format: Paperback Publisher's Status: Active Availability: In Print This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us. Language: German Table of Contents1. Zahlen und Vektoren.- §1. Mengen und Abbildungen.- §2. Die reellen Zahlen.- §3. Die Ebene.- §4. Vektoren.- §5. Produkte.- §6. Geraden und Ebenen.- §7. Gebundene Vektoren.- §8. Die komplexen Zahlen.- 2. Funktionen, Grenzwerte, Stetigkeit.- §1. Funktionen (Grundbegriffe).- §2. Polynome und rationale Funktionen.- §3. Die Kreisfunktionen.- §4. Zahlenfolgen und Grenzwerte.- §5. Rechenregeln für Grenzwerte und Konvergenzkriterien.- §6. Funktionengrenzwerte, Stetigkeit.- 3. Differentiation.- §1. Die Ableitung einer differenzierbaren Funktion.- §2. Anwendungen der Differentiation.- §3. Umkehrfunktionen.- §4. Die Exponential- und Logarithmusfunktion.- 4. Integration.- §1. Das bestimmte Integral.- §2. Integrationsregeln.- §3. Die Integration der rationalen Funktionen.- §4. Uneigentliche Integrale.- §5. Kurven, Längen- und Flächenmessung.- §6. Weitere Anwendungen des Integrals.- §7. Numerische Integration.- 5. Potenzreihen.- §1. Unendliche Reihen.- §2. Reihen von Funktionen.- §3. Potenzreihen.- §4. Der Satz von Taylor; Taylor-Reihen.- §5. Anwendungen (an Beispielen).- 6. Lineare Algebra.- §1. Lineare Gleichungssysteme und Matrizen.- §2. Die Matrizenmultiplikation.- §3. Vektorräume.- §4. Elementarmatrizen und elementare Umformungen.- §5. Determinanten.- §6. Lineare Abbildungen und Eigenwerte.- §7. Symmetrische Matrizen und quadratische Formen.- 7. Funktionen in mehreren Variablen: Differentiation.- §1. Kurven im ?n.- §2. Reellwertige Funktionen mehrerer reeller Veränderlicher.- §3. Anwendungen der Differentiation.- §4. Vektorwertige Funktionen.- 8. Funktionen in mehreren Variablen: Integration.- §1. Parameterintegrale.- §2. Kurvenintegrale.- §3. Die Integration über ebene Bereiche.- §4. Die Integration über Flächen im Raum.-§5. Die Integration über dreidimensionale Bereiche.- Anhang: Pascal-Programme.- Namen- und Sachverzeichnis.ReviewsAuthor InformationTab Content 6Author Website:Countries AvailableAll regions |
||||