|
![]() |
|||
|
||||
OverviewFull Product DetailsAuthor: Hansjoachim Walther , Günter NäglerPublisher: Springer Verlag GmbH Imprint: Springer Verlag GmbH Edition: Softcover reprint of the original 1st ed. 1987 Dimensions: Width: 17.00cm , Height: 1.10cm , Length: 24.40cm Weight: 0.349kg ISBN: 9783709188576ISBN 10: 3709188571 Pages: 192 Publication Date: 07 January 2012 Audience: Professional and scholarly , Professional & Vocational Format: Paperback Publisher's Status: Active Availability: In Print ![]() This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us. Language: German Table of Contents0. Einleitung.- 1. Grundlagen.- 1.1. Was ist ein Graph ?.- 1.2. Beschreibung und Speicherung von Graphen.- 1.3. Algorithmus und Programm.- 1.4. Einfache Organisationsalgorithmen.- 1.5. Abschätzungen des Aufwandes von Algorithmen.- 2. Abstandsprobleme.- 2.1. Einführung.- 2.2. Erreichbarkeit.- 2.2.1. Problemstellung.- 2.2.2. Trémaux-Algorithmus.- 2.2.3. Das Prinzip Depth-First-Search (DFS).- 2.2.4. Das Prinzip Breadth-First-Search (BFS).- 2.3. Wurzelbäume.- 2.3.1. Beispiele.- 2.3.2. Ordnungen in Wurzelbäumen.- 2.4. Zusammenhang.- 2.5. Starker Zusammenhang.- 2.6. Kreisfreiheit.- 2.7. Kürzeste Wege.- 2.7.1. Beispiele.- 2.7.2. Nichtnegative Bogenlängen.- 2.7.3. Beliebige reelle Bogenlängen.- 2.7.4. Kaskadealgorithmus und Floyd-Algorithmus.- 2.8. Radius und Zentrum.- 2.8.1. Beispiele.- 2.8.2. Definitionen und Aufgabenstellung.- 2.8.3. Algorithmus zur Radius- und Zentrumsermittlung.- 2.8.4. Zentrumsmengen.- 2.9. Längste Wege.- 2.9.1. Beispiele.- 2.9.2. Längste Wege und Kreisfreiheit.- 2.9.3. Graphen ohne Kreise.- 2.9.4. Graphen mit Kreisen.- 2.10. Minimalgerüst.- 2.10.1. Aufgabenstellung.- 2.10.2. Grundidee zur Lösung des Minimalgerüstproblems.- 2.10.3. Greedyalgorithmen.- 2.10.4. Ein Algorithmus vom Aufwand O(mn).- 2.10.5. Ein Algorithmus vom Aufwand O(m · log n).- 2.11. Das Steiner-Problem.- 2.11.1. Aufgabenstellung.- 2.11.2. Eigenschaften von Minimalnetzen.- 2.11.3. Konstruktion eines Minimalnetzes.- 2.11.4. Algorithmus zur Ermittlung eines Steiner-Netzes.- 2.11.5. Kostenabhängigkeit.- 3. Strom- und Transportprobleme.- 3.1. Beispiele und Definitionen.- 3.2. Elektrische Netze.- 3.2.1. Aufgabenstellung.- 3.2.2. Mathematische Sätze.- 3.2.3. Methoden zur Lösung der Gleichungssysteme.- 3.2.4. Eine mathematische Perle.- 3.3. Maximalstromproblem.- 3.3.1. Problemformulierung.- 3.3.2. Eine Ersatzaufgabe.- 3.3.3. Verbalalgorithmus zur Lösung des Maximalstromproblems MAX 2 und PASCAL-procedure.- 3.4. Zirkulationsproblem.- 3.4.1. Problemstellung und Beispiele.- 3.4.2. Das Optimalitätskriterium.- 3.4.3. Die Idee des out-of-kilter-Algorithmus.- 3.4.4. Verbalalgorithmus und PASCAL-procedure TRANSPORT.- 3.5. Das Zuordnungsproblem.- 3.5.1. Aufgabenstellung.- 3.5.2. Der Satz von König.- 3.5.3. Verbalalgorithmus zur Lösung des Zuordnungsproblems.- 3.5.4. Ein Beispiel.- 3.5.5. PASCAL-procedure ZUORDNUNG.- 3.6. Das Rundreiseproblem.- 3.6.1. Aufgabenstellung.- 3.6.2. Ein Verfahren, basierend auf dem Prinzip branch-and-bound.- 3.6.3. Verbalalgorithmus zur exakten Lösung des Rundreiseproblems.- 3.6.4. Näherungsverfahren zur Lösung des Rundreiseproblems und PASCAL-procedures.- 4. Parameterprobleme.- 4.1. Innere Stabilitätszahl.- 4.1.1. Beispiele und Probleme.- 4.1.2. Verbalalgorithmus zur Ermittlung innerlich stabiler Mengen und PASCAL-procedure.- 4.2. Chromatische Zahl.- 4.2.1. Problemstellung.- 4.2.2. Definitionen und Sätze.- 4.2.3. Verbalalgorithmen zur zulässigen Färbung eines Graphen.- 4.2.4. PASCAL-procedure zur Minimalgradfolge und zulässiger Färbung.- 4.2.5. Exakter Algorithmus zur Bestimmung der chromatischen Zahl und PASCAL-procedure.- 4.2.6. Prozedur zur Ermittlung der chromatischen Zahl.- 4.3. Dominierende Knotenmengen.- 4.3.1. Beispiele und Aufgabenstellung.- 4.3.2. Definitionen, Verbalalgorithmus und PASCAL-procedure.- 4.4. Maximumpaarung.- 4.4.1. Aufgabenstellung.- 4.4.2. Erforderliche Sätze.- 4.4.3. Verbalalgorithmus.- 4.4.4. PASCAL-procedure zur Näherung an eine Maximumpaarung.- 4.5. Planarität von Graphen.- 4.5.1. Problemstellung.- 4.5.2. Planaritätssätze.- 4.5.2.1. Der Satz von Kuratowski.- 4.5.2.2. Der Satz von McLane.- 4.5.2.3. Der Satz von Whitney.- 4.5.3. Planaritätsalgorithmen.- 4.6. Bemerkungen zur Auswertung von Rechenbeispielen.- Literatur- und Quellenverzeichnis.- Sachwortverzeichnis.ReviewsAuthor InformationTab Content 6Author Website:Countries AvailableAll regions |