Graph Polynomials

Author:   Yongtang Shi (Nankai University, Tianjin, People's Republic of China) ,  Matthias Dehmer (UMIT, Hall in Tirol, Austria) ,  Xueliang Li (Nankai University, Tianjin, People's Republic of China) ,  Ivan Gutman (University of Kragujevac, Serbia)
Publisher:   Taylor & Francis Inc
ISBN:  

9781498755900


Pages:   252
Publication Date:   06 December 2016
Format:   Hardback
Availability:   In Print   Availability explained
This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us.

Our Price $326.00 Quantity:  
Add to Cart

Share |

Graph Polynomials


Add your own review!

Overview

This book covers both theoretical and practical results for graph polynomials. Graph polynomials have been developed for measuring combinatorial graph invariants and for characterizing graphs. Various problems in pure and applied graph theory or discrete mathematics can be treated and solved efficiently by using graph polynomials. Graph polynomials have been proven useful areas such as discrete mathematics, engineering, information sciences, mathematical chemistry and related disciplines.

Full Product Details

Author:   Yongtang Shi (Nankai University, Tianjin, People's Republic of China) ,  Matthias Dehmer (UMIT, Hall in Tirol, Austria) ,  Xueliang Li (Nankai University, Tianjin, People's Republic of China) ,  Ivan Gutman (University of Kragujevac, Serbia)
Publisher:   Taylor & Francis Inc
Imprint:   Chapman & Hall/CRC
Weight:   0.635kg
ISBN:  

9781498755900


ISBN 10:   1498755909
Pages:   252
Publication Date:   06 December 2016
Audience:   College/higher education ,  Professional and scholarly ,  Undergraduate ,  Postgraduate, Research & Scholarly
Format:   Hardback
Publisher's Status:   Active
Availability:   In Print   Availability explained
This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us.

Table of Contents

The Alliance Polynomial of a Graph. Aspects of the Interlace Polynomial of a Graph. The clique-transversal set problem in clawfree graphs with degree at most 4. Permanental Polynomials of Graphs. Tutte polynomial and its generalizations. Graphs characterized by various polynomials. Recurrence relations of graph polynomials. Independence polynomials of k-tree related graphs. Generatingfunctionology for Graph Polynomials. Symmetric representations and the connection with linear recurrences. From the Ising and Potts model to the general graph homomorphism polynomial.

Reviews

Author Information

Matthias Dehmer studied mathematics at the University of Siegen (Germany) and received his Ph.D. in computer science from the Technical University of Darmstadt (Germany). Afterwards, he was a research fellow at Vienna Bio Center (Austria), Vienna University of Technology, and University of Coimbra (Portugal). He obtained his habilitation in applied discrete mathematics from the Vienna University of Technology. Currently, he is Professor at UMIT - The Health and Life Sciences University (Austria) and also has a position at Bundeswehr Universit¨at M¨unchen (Germany). His research interests are in graph theory, complex networks, complexity, machine learning and information theory. In particular, he is also working on machine learning-based methods to design new data analysis methods for solving problems in computational biology. He has more than 170 publications in applied mathematics, computer science and related disciplines. Yongtang Shi studied mathematics at Northwest University (Xi’an, China) and received his Ph.D in applied mathematics from Nankai University (Tianjin, China). Currently, he is an associate professor at the Center for Combinatorics of Nankai University. He visited some institutes and universities at Germany, Austria and Canada. His research interests are in graph theory and its applications, especially the applications of graph theory in mathematical chemistry, computer science and information theory. He has about 50 publications in graph theory and its applications. Ivan Gutman obtained his PhD degree in chemistry at the Faculty of Science, University of Zagreb, and also a PhD degree in mathematics, at the Faculty of Electrical Engineering, University of Belgrade. He is a member of the Serbian Academy of Sciences and Arts 1998; a member of the International Academy

Tab Content 6

Author Website:  

Customer Reviews

Recent Reviews

No review item found!

Add your own review!

Countries Available

All regions
Latest Reading Guide

MRG2025CC

 

Shopping Cart
Your cart is empty
Shopping cart
Mailing List