|
![]() |
|||
|
||||
OverviewFull Product DetailsAuthor: Rada Mihalcea (University of North Texas) , Dragomir Radev (University of Michigan, Ann Arbor)Publisher: Cambridge University Press Imprint: Cambridge University Press (Virtual Publishing) ISBN: 9780511976247ISBN 10: 0511976240 Publication Date: 01 June 2011 Audience: Professional and scholarly , Professional & Vocational Format: Undefined Publisher's Status: Active Availability: Available To Order ![]() We have confirmation that this item is in stock with the supplier. It will be ordered in for you and dispatched immediately. Table of ContentsPart I. Introduction to Graph Theory: 1. Notations, properties, and representations; 2. Graph-based algorithms; Part II. Networks: 3. Random networks; 4. Language networks; Part III. Graph-Based Information Retrieval: 5. Link analysis for the World Wide Web; 6. Text clustering; Part IV. Graph-Based Natural Language Processing: 7. Semantics; 8. Syntax; 9. Applications.Reviews'For the first time, a computational framework that unifies many algorithms and representations from the fields of natural language processing and information retrieval. This book is a comprehensive introduction to both theory and practice.' Giorgio Satta, University of Padua 'The book is highly recommended to be read not only by upper-level undergraduate and graduate students, but also by experts who are looking for a brief overview of this area. The book aims to enable the readers to gain sufficient understanding of graph-based approaches used in information retrieval and to recognize opportunities for advancing the state of art in natural language processing problems by applications of graph theory.' Korhan Gunel, Zentralblatt MATH For the first time, a computational framework that unifies many algorithms and representations from the fields of natural language processing and information retrieval. This book is a comprehensive introduction to both theory and practice. Giorgio Satta, University of Padua 'For the first time, a computational framework that unifies many algorithms and representations from the fields of natural language processing and information retrieval. This book is a comprehensive introduction to both theory and practice.' Giorgio Satta, University of Padua 'The book is highly recommended to be read not only by upper-level undergraduate and graduate students, but also by experts who are looking for a brief overview of this area. The book aims to enable the readers to gain sufficient understanding of graph-based approaches used in information retrieval and to recognize opportunities for advancing the state of art in natural language processing problems by applications of graph theory.' Korhan Gunel, Zentralblatt MATH Author InformationRada Mihalcea is an Associate Professor in the Department of Computer Science and Engineering at the University of North Texas, where she leads the Language and Information Technologies research group. In 2009, she received the Presidential Early Career Award for Scientists and Engineers, awarded by President Barack Obama. She served on the editorial board of several journals, including Computational Linguistics, the Journal of Natural Language Engineering and Language Resources and Evaluations, and she co-chaired the Empirical Methods in Natural Language Processing conference in 2009 and the Association for Computational Linguistics conference in 2011. She has been published in IEEE Intelligent Systems, the Journal of Natural Language Engineering, the Journal of Machine Translation, Computational Intelligence, the International Journal of Semantic Computing and Artificial Intelligence Magazine. Dragomir Radev is a Professor in the School of Information, the Department of Electrical Engineering and Computer Science, and the Department of Linguistics at the University of Michigan, where he is leader of the Computational Linguistics and Information Retrieval research group (CLAIR). He has more than 100 publications in conferences and journals such as Communications of the ACM, the Journal of Artificial Intelligence Research, Bioinformatics, Computational Linguistics, Information Processing and Management and the American Journal of Political Science, among others. He is on the editorial boards of Information Retrieval, the Journal of Natural Language Engineering and the Journal of Artificial Intelligence Research. Radev is an ACM distinguished scientist as well as the coach of the US high school team in computational linguistics. Tab Content 6Author Website:Countries AvailableAll regions |