|
![]() |
|||
|
||||
OverviewThe purpose of this book is to present systematically all known mathematical results on Gibbs measures on Cayley trees (Bethe lattices).The Gibbs measure is a probability measure, which has been an important object in many problems of probability theory and statistical mechanics. It is the measure associated with the Hamiltonian of a physical system (a model) and generalizes the notion of a canonical ensemble. More importantly, when the Hamiltonian can be written as a sum of parts, the Gibbs measure has the Markov property (a certain kind of statistical independence), thus leading to its widespread appearance in many problems outside of physics such as biology, Hopfield networks, Markov networks, and Markov logic networks. Moreover, the Gibbs measure is the unique measure that maximizes the entropy for a given expected energy.The method used for the description of Gibbs measures on Cayley trees is the method of Markov random field theory and recurrent equations of this theory, but the modern theory of Gibbs measures on trees uses new tools such as group theory, information flows on trees, node-weighted random walks, contour methods on trees, and nonlinear analysis. This book discusses all the mentioned methods, which were developed recently.Contents: Group Representation of the Cayley TreeIsing Model on the Cayley TreeIsing Type Models with Competing InteractionsInformation Flow on TreesThe Potts ModelThe Solid-on-Solid ModelModels with Hard ConstraintsPotts Model with Countable Set of Spin ValuesModels with Uncountable Set of Spin ValuesContour Arguments on Cayley TreesOther ModelsReadership: Researchers in mathematical physics, statistical physics, probability and measure theory. Full Product DetailsAuthor: Utkir A RozikovPublisher: World Scientific Publishing Company Imprint: World Scientific Publishing Company ISBN: 9781299770898ISBN 10: 1299770894 Pages: 404 Publication Date: 01 January 2013 Audience: General/trade , General Format: Electronic book text Publisher's Status: Active Availability: Available To Order ![]() We have confirmation that this item is in stock with the supplier. It will be ordered in for you and dispatched immediately. Table of ContentsReviewsAuthor InformationTab Content 6Author Website:Countries AvailableAll regions |