|
![]() |
|||
|
||||
OverviewThis book represents the fruits of the author's many years of research and teaching. The introductory chapter contains the necessary background information from algebra, topology, and geometry of real spaces. Chapter 1 presents more specialized information on associative and nonassociative algebras and on Lie groups and algebras. In Chapters 2 through 6 geometric interpretations of all simple Lie groups of classes An, Bn, Cn, and Dn as well as of finite groups of Lie type are given. In Chapters 5 and 6 geometric interpretations of quasisimple and r-quasisimple Lie groups of the same classes are included. In Chapter 7, for the first time ever, geometric interpretations of all simple and quasisimple Lie groups of exceptional classes G2, F4, E6, E7, and E8 are given. The role of exercises is played by the assertions and theorems given without a full proof, but with the indication that they can be proved analogously to already proved theorems. Audience: The book will be of interest to graduate students and researchers in mathematics and physics. Full Product DetailsAuthor: B. Rosenfeld , Bill WiebePublisher: Springer-Verlag New York Inc. Imprint: Springer-Verlag New York Inc. Edition: Softcover reprint of hardcover 1st ed. 1997 Volume: 393 Dimensions: Width: 15.50cm , Height: 2.10cm , Length: 23.50cm Weight: 0.640kg ISBN: 9781441947697ISBN 10: 1441947698 Pages: 398 Publication Date: 08 December 2010 Audience: Professional and scholarly , Professional & Vocational Format: Paperback Publisher's Status: Active Availability: Out of stock ![]() The supplier is temporarily out of stock of this item. It will be ordered for you on backorder and shipped when it becomes available. Table of Contents0. Structures of Geometry.- I. Algebras and Lie Groups.- II. Affine and Projective Geometries.- III. Euclidean, Pseudo-Euclidean, Conformal and Pseudo conformal Geometries.- IV. Elliptic, Hyperbolic, Pseudoelliptic, and Pseudohyperbolic Geometries.- V. Quasielliptic, Quasihyperbolic, and Quasi-Euclidean Geometries.- VI. Symplectic and Quasisymplectic Geometries.- VII. Geometries of Exceptional Lie Groups. Metasymplectic Geometries.- References.- Index of Persons.- Index of Subjects.ReviewsAuthor InformationTab Content 6Author Website:Countries AvailableAll regions |