|
![]() |
|||
|
||||
OverviewWith applications in mind, this self-contained monograph provides a coherent and thorough treatment of the configuration spaces of Euclidean spaces and spheres, making the subject accessible to researchers and graduates with a minimal background in classical homotopy theory and algebraic topology. Full Product DetailsAuthor: Edward R. Fadell , Sufian Y. HusseiniPublisher: Springer-Verlag Berlin and Heidelberg GmbH & Co. KG Imprint: Springer-Verlag Berlin and Heidelberg GmbH & Co. K Edition: Softcover reprint of the original 1st ed. 2001 Dimensions: Width: 15.50cm , Height: 1.70cm , Length: 23.50cm Weight: 0.510kg ISBN: 9783642630774ISBN 10: 3642630774 Pages: 313 Publication Date: 09 October 2012 Audience: Professional and scholarly , Professional & Vocational Format: Paperback Publisher's Status: Active Availability: Manufactured on demand ![]() We will order this item for you from a manufactured on demand supplier. Table of ContentsI. The Homotopy Theory of Configuration Spaces.- I. Basic Fibrations.- II. Configuration Space of ?n+1, n < 1.- III. Configuration Spaces of Sn+1, n < 1.- IV. The Two Dimensional Case.- II. Homology and Cohomology of $$(\mathbb{F}_k (M)$$.- V. The Algebra $$H^* (\mathbb{F}_k (M);\mathbb{Z})$$.- VI. Cellular Models.- VII. Cellular Chain Models.- III. Homology and Cohomology of Loop Spaces.- VIII. The Algebra $$H_* (\Omega \mathbb{F}_k (M)))$$.- IX. RPT-Constructions.- X. Cellular Chain Algebra Models.- XI. The Serre Spectral Sequence.- XII. Computation of H*(?(M)).- XIII. ?-Category and Ends.- XIV. Problems of k-body Type.- References.ReviewsAuthor InformationTab Content 6Author Website:Countries AvailableAll regions |