Geometric Structures of Information

Author:   Frank Nielsen
Publisher:   Springer Nature Switzerland AG
Edition:   1st ed. 2019
ISBN:  

9783030025199


Pages:   392
Publication Date:   29 November 2018
Format:   Hardback
Availability:   Manufactured on demand   Availability explained
We will order this item for you from a manufactured on demand supplier.

Our Price $448.77 Quantity:  
Add to Cart

Share |

Geometric Structures of Information


Add your own review!

Overview

This book focuses on information geometry manifolds of structured data/information and their advanced applications featuring new and fruitful interactions between several branches of science: information science, mathematics and physics. It addresses interrelations between different mathematical domains like shape spaces, probability/optimization & algorithms on manifolds, relational and discrete metric spaces, computational and Hessian information geometry, algebraic/infinite dimensional/Banach information manifolds, divergence geometry, tensor-valued morphology, optimal transport theory, manifold & topology learning, and applications like geometries of audio-processing, inverse problems and signal processing. The book collects the most important contributions to the conference GSI’2017 – Geometric Science of Information.

Full Product Details

Author:   Frank Nielsen
Publisher:   Springer Nature Switzerland AG
Imprint:   Springer Nature Switzerland AG
Edition:   1st ed. 2019
Weight:   0.764kg
ISBN:  

9783030025199


ISBN 10:   3030025195
Pages:   392
Publication Date:   29 November 2018
Audience:   Professional and scholarly ,  Professional & Vocational
Format:   Hardback
Publisher's Status:   Active
Availability:   Manufactured on demand   Availability explained
We will order this item for you from a manufactured on demand supplier.

Table of Contents

Rho-Tau Embedding of Statistical Models.- A class of non-parametric deformed exponentialstatistical models.- Statistical Manifolds Admitting Torsion and Partially Flat Spaces.- Conformal attening on the probability simplex and its applications to Voronoi partitions and centroids Atsumi Ohara.- Monte Carlo Information-Geometric Structures.- Information geometry in portfolio theory.- Generalising Frailty Assumptions in Survival Analysis: a Geometric Approach.- Some Universal Insights on Divergences forStatistics, Machine Learning and Articial Intelligence.- Information-Theoretic MatrixInequalities and Diusion Processes on Unimodular Lie Groups.

Reviews

Author Information

Frank Nielsen is Professor at the Laboratoire d'informatique de l'École polytechnique, Paris, France. His research aims at understanding the nature and structure of information and randomness in data, and exploiting algorithmically this knowledge in innovative imaging applications. For that purpose, he coined the field of computational information geometry (computational differential geometry) to extract information as regular structures whilst taking into account variability in datasets by grounding them in geometric spaces. Geometry beyond Euclidean spaces has a long history of revolutionizing the way we perceived reality. Curved spacetime geometry, sustained relativity theory and fractal geometry unveiled the scale-free properties of Nature. In the digital world, geometry is data-driven and allows intrinsic data analytics by capturing the very essence of data through invariance principles without being biased by such or such particular data representation.

Tab Content 6

Author Website:  

Customer Reviews

Recent Reviews

No review item found!

Add your own review!

Countries Available

All regions
Latest Reading Guide

MRG2025CC

 

Shopping Cart
Your cart is empty
Shopping cart
Mailing List