|
![]() |
|||
|
||||
OverviewNumerical methods that preserve properties of Hamiltonian systems, reversible systems, differential equations on manifolds and problems with highly oscillatory solutions are the subject of this book. A complete self-contained theory of symplectic and symmetric methods, which include Runge-Kutta, composition, splitting, multistep and various specially designed integrators, is presented and their construction and practical merits are discussed. The long-time behaviour of the numerical solutions is studied using a backward error analysis (modified equations) combined with KAM theory. The book is illustrated by many figures, it treats applications from physics and astronomy and contains many numerical experiments and comparisons of different approaches. The second edition is substantially revised and enlarged, with many improvements in the presentation and additions concerning in particular non-canonical Hamiltonian systems, highly oscillatory mechanical systems, and the dynamics of multistep methods. Full Product DetailsAuthor: Ernst Hairer , Christian Lubich , Gerhard WannerPublisher: Springer-Verlag Berlin and Heidelberg GmbH & Co. KG Imprint: Springer-Verlag Berlin and Heidelberg GmbH & Co. K Edition: 2nd ed. 2006. 2nd printing 2010 Volume: 31 Dimensions: Width: 15.50cm , Height: 3.30cm , Length: 23.50cm Weight: 2.020kg ISBN: 9783642051579ISBN 10: 364205157 Pages: 644 Publication Date: 11 March 2010 Audience: Professional and scholarly , Professional & Vocational Format: Paperback Publisher's Status: Active Availability: In Print ![]() This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us. Table of ContentsReviewsAus den Rezensionen zur 2. Auflage: ... die ... uberarbeitete und inhaltlich erweiterte Auflage ... 'Geometric Integration' steht fur strukturerhaltende Integration ! Der aktuelle Band liefert auf etwa 600 Seiten eine umfassende Darstellung dieses Forschungsgebietes, das sich etwa in den letzten 20 Jahren signifikant entwickelt hat und in verschiedensten Anwendungsgebieten von Relevanz ist. ! Wie auch die beiden vorangegangenen Bande der Autoren uber die Integration nichtsteifer und steifer Systeme ist dies ein Standardwerk, das auch redaktionall [sic] und graphisch vorbildlich aufbereitet ist. Es solle in jedem einschlagigen Regal seinen Platz finden. (W. Auzinger, in: Internationale Mathematische Nachrichten, 2008, Vol. 62, Issue 209, S. 62) Author InformationTab Content 6Author Website:Countries AvailableAll regions |