|
![]() |
|||
|
||||
OverviewThis thesis reports a rare combination of experiment and theory on the role of geometry in materials science. It is built on two significant findings: that curvature can be used to guide crack paths in a predictive way, and that protected topological order can exist in amorphous materials. In each, the underlying geometry controls the elastic behavior of quasi-2D materials, enabling the control of crack propagation in elastic sheets and the control of unidirectional waves traveling at the boundary of metamaterials. The thesis examines the consequences of this geometric control in a range of materials spanning many orders of magnitude in length scale, from amorphous macroscopic networks and elastic continua to nanoscale lattices. Full Product DetailsAuthor: Noah MitchellPublisher: Springer Nature Switzerland AG Imprint: Springer Nature Switzerland AG Edition: 1st ed. 2020 Weight: 0.454kg ISBN: 9783030363635ISBN 10: 3030363635 Pages: 121 Publication Date: 03 January 2021 Audience: Professional and scholarly , Professional & Vocational Format: Paperback Publisher's Status: Active Availability: Manufactured on demand ![]() We will order this item for you from a manufactured on demand supplier. Table of ContentsReviewsAuthor InformationNoah Mitchell is a postdoctoral fellow at the Kavli Institute for Theoretical Physics at the University of California, Santa Barbara. He received his PhD from the University of Chicago in 2018. Tab Content 6Author Website:Countries AvailableAll regions |