|
![]() |
|||
|
||||
OverviewFull Product DetailsAuthor: V.D. Milman , G. SchechtmanPublisher: Springer-Verlag Berlin and Heidelberg GmbH & Co. KG Imprint: Springer-Verlag Berlin and Heidelberg GmbH & Co. K Edition: 2000 ed. Volume: 1745 Dimensions: Width: 15.50cm , Height: 1.60cm , Length: 23.50cm Weight: 0.960kg ISBN: 9783540410706ISBN 10: 3540410708 Pages: 298 Publication Date: 26 October 2000 Audience: College/higher education , Professional and scholarly , Postgraduate, Research & Scholarly , Professional & Vocational Format: Paperback Publisher's Status: Active Availability: In Print ![]() This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us. Table of ContentsM. Anttila, The Transportation Cost for the Cube.-J. Arias-de-Reyna, R. Villa, The Uniform Concentration of Measure Phenomenon in l p^n.- G. Schechtman, An Editorial Comment on the Preceding Paper.- K. Ball, A Remark on the Slicing Problem.- S.G. Bobkov, Remarks on the Growth of L^p-norms of Polynomials.- J. Bourgain, Positive Lyapounov Exponents for Most Energies.- J. Bourgain, S. Jitomirskaya, Anderson Localization for the Band Model.- A.A. Giannopoulos, V.D. Milman, M. Rudelson, Convex Bodies with Minimal Mean Width.- O. Guedon, A.E. Litvak, Euclidean Projections of a p-convex Body.- B. Klartag, Remarks on Minkowski Symmetrizations.- A. Koldobsky, M. Lifshits, Average Volume of Sections of Star Bodies.- R. Latala, K. Oleszkiewicz, Between Sobolev and Poincare. A.E. Litvak, N. Tomczak-Jaegermann, Random Aspects of High-dimensional Convex Bodies.- V.D. Milman, S.J. Szarek, A Geometric Lemma and Duality of Entropy Numbers.- V.D. Milman, N. Tomczak-Jaegermann, Stabilized Asymptotic Structures and Envelopes in Banach Spaces.- G. Paouris, On the Isotropic Constant of Non-symmetric Convex Bodies.- G. Schechtman, J. Zinn, Concentration on the l p^n Ball.- S.J. Szarek, D. Voiculescu, Shannon's Entropy Power Inequality via Restricted Minkowski Sums.- R. Wagner, Notes on an Inequality by Pisier for Functions on the Discrete Cube.- A. Zvavitch, More on Embedding Subspaces of L p into l^N pReviewsAuthor InformationTab Content 6Author Website:Countries AvailableAll regions |