Geomechanics in CO2 Storage Facilities

Author:   Gilles Pijaudier-Cabot (Ecole Centrale de Nantes, France) ,  Jean-Michel Pereira (Ecole des Ponts ParisTech)
Publisher:   ISTE Ltd and John Wiley & Sons Inc
Volume:   724
ISBN:  

9781848214163


Pages:   248
Publication Date:   18 December 2012
Format:   Hardback
Availability:   Out of stock   Availability explained
The supplier is temporarily out of stock of this item. It will be ordered for you on backorder and shipped when it becomes available.

Our Price $295.95 Quantity:  
Add to Cart

Share |

Geomechanics in CO2 Storage Facilities


Add your own review!

Overview

Full Product Details

Author:   Gilles Pijaudier-Cabot (Ecole Centrale de Nantes, France) ,  Jean-Michel Pereira (Ecole des Ponts ParisTech)
Publisher:   ISTE Ltd and John Wiley & Sons Inc
Imprint:   ISTE Ltd and John Wiley & Sons Inc
Volume:   724
Dimensions:   Width: 16.00cm , Height: 2.80cm , Length: 24.10cm
Weight:   0.567kg
ISBN:  

9781848214163


ISBN 10:   1848214162
Pages:   248
Publication Date:   18 December 2012
Audience:   Professional and scholarly ,  Professional & Vocational
Format:   Hardback
Publisher's Status:   Active
Availability:   Out of stock   Availability explained
The supplier is temporarily out of stock of this item. It will be ordered for you on backorder and shipped when it becomes available.

Table of Contents

Preface xi PART 1. TRANSPORT PROCESSES  1 Chapter 1. Assessing Seal Rock Integrity for CO2 Geological Storage Purposes  3 Daniel BROSETA 1.1. Introduction 3 1.2. Gas breakthrough experiments in water-saturated rocks 6 1.3. Interfacial properties involved in seal rock integrity 9 1.3.1. Brine-gas IFT 9 1.3.2. Wetting behavior 10 1.4. Maximum bottomhole pressure for storage in a depleted hydrocarbon reservoir 12 1.5. Evidences for capillary fracturing in seal rocks 13 1.6. Summary and prospects 14 1.7. Bibliography 15 Chapter 2. Gas Migration through Clay Barriers in the Context of Radioactive Waste Disposal: Numerical Modeling of an In Situ Gas Injection Test  21 Pierre GÉRARD, Jean-Pol RADU, Jean TALANDIER, Rémi de La VAISSIÈRE, Robert CHARLIER and Frédéric COLLIN 2.1. Introduction 21 2.2. Field experiment description 23 2.3. Boundary value problem 26 2.3.1. 1D and 3D geometry and boundary conditions 26 2.3.2. Hydraulic model 27 2.3.3. Hydraulic parameters 28 2.4. Numerical results 29 2.4.1. 1D modeling 30 2.4.2. 3D modeling 34 2.5. Discussion and conclusions 37 2.6. Bibliography 39 Chapter 3. Upscaling Permeation Properties in Porous Materials from Pore Size Distributions  43 Fadi KHADDOUR, David GRÉGOIRE and Gilles PIJAUDIER-CABOT 3.1. Introduction 43 3.2. Assembly of parallel pores 44 3.2.1. Presentation 44 3.2.2. Permeability 45 3.2.3. Case of a sinusoidal multi-modal pore size distribution 47 3.3. Mixed assembly of parallel and series pores 48 3.3.1. Presentation 48 3.3.2. Permeability 49 3.4. Comparisons with experimental results 51 3.4.1. Electrical fracturing tests 51 3.4.2. Measurement of the pore size distribution 53 3.4.3. Model capabilities to predict permeability and comparisons with experiments 54 3.5. Conclusions 55 3.6. Acknowledgments 55 3.7. Bibliography 56 PART 2. FRACTURE, DEFORMATION AND COUPLED EFFECTS  57 Chapter 4. A Non-Local Damage Model for Heterogeneous Rocks – Application to Rock Fracturing Evaluation Under Gas Injection Conditions 59 Darius M. SEYEDI, Nicolas GUY, Serigne SY, Sylvie GRANET and François HILD 4.1. Introduction 60 4.2. A probabilistic non-local model for rock fracturing 61 4.3. Hydromechanical coupling scheme 63 4.4. Application example and results 66 4.4.1. Effect of Weibull modulus 70 4.5. Conclusions and perspectives 70 4.6. Acknowledgments 71 4.7. Bibliography 71 Chapter 5. Caprock Breach: A Potential Threat to Secure Geologic Sequestration of CO2 75 A.P.S. SELVADURAI 5.1. Introduction 75 5.2. Caprock flexure during injection 77 5.2.1. Numerical results for the caprock–geologic media interaction 81 5.3. Fluid leakage from a fracture in the caprock 85 5.3.1. Numerical results for fluid leakage from a fracture in the caprock 89 5.4. Concluding remarks 90 5.5. Acknowledgment 91 5.6. Bibliography 91 Chapter 6. Shear Behavior Evolution of a Fault due to Chemical Degradation of Roughness: Application to the Geological Storage of CO2 95 Olivier NOUAILLETAS, Céline PERLOT, Christian LA BORDERIE, Baptiste ROUSSEAU and Gérard BALLIVY 6.1. Introduction 96 6.2. Experimental setup 97 6.3. Roughness and chemical attack 99 6.4. Shear tests 103 6.5. Peak shear strength and peak shear displacement: Barton’s model 107 6.6. Conclusion and perspectives 112 6.7. Acknowledgment 113 6.8. Bibliography 113 Chapter 7. CO2 Storage in Coal Seams: Coupling Surface Adsorption and Strain 115 Saeid NIKOOSOKHAN, Laurent BROCHARD, Matthieu VANDAMME, Patrick DANGLA, Roland J.-M. PELLENQ, Brice LECAMPION and Teddy FEN-CHONG 7.1. Introduction 115 7.2. Poromechanical model for coal bed reservoir 116 7.2.1. Physics of adsorption-induced swelling of coal 116 7.2.2. Assumptions of model for coal bed reservoir 118 7.2.3. Case of coal bed reservoir with no adsorption 118 7.2.4. Derivation of constitutive equations for coal bed reservoir with adsorption 120 7.3. Simulations 122 7.3.1. Simulations at the molecular scale: adsorption of carbon dioxide on coal 122 7.3.2. Simulations at the scale of the reservoir 124 7.3.3. Discussion 127 7.4. Conclusions 128 7.5. Bibliography 129 PART 3. AGING AND INTEGRITY 133 Chapter 8. Modeling by Homogenization of the Long-Term Rock Dissolution and Geomechanical Effects 135 Jolanta LEWANDOWSKA 8.1. Introduction 135 8.2. Microstructure and modeling by homogenization 136 8.3. Homogenization of the H-M-T problem 138 8.3.1. Formulation of the problem at the microscopic scale 138 8.3.2. Asymptotic developments method 142 8.3.3. Solutions 143 8.3.4. Summary of the macroscopic “H-M-T model” 148 8.4. Homogenization of the C-M problem 148 8.4.1. Formulation of the problem at the microscopic scale 148 8.4.2. Homogenization 150 8.4.3. Summary of the macroscopic “C-M model” 151 8.5. Numerical computations of the time degradation of the macroscopic rigidity tensor 152 8.5.1. Definition of the problem 152 8.5.2. Results and discussion 154 8.6. Conclusions 158 8.7. Acknowledgment 160 8.8. Bibliography 160 Chapter 9. Chemoplastic Modeling of Petroleum Cement Paste under Coupled Conditions 163 Jian Fu SHAO, Y. JIA, Nicholas BURLION, Jeremy SAINT-MARC and Adeline GARNIER 9.1. Introduction 163 9.2. General framework for chemo-mechanical modeling 164 9.2.1. Phenomenological chemistry model 166 9.3. Specific plastic model for petroleum cement paste 169 9.3.1. Elastic behavior 169 9.3.2. Plastic pore collapse model 170 9.3.3. Plastic shearing model 172 9.4. Validation of model 174 9.5. Conclusions and perspectives 178 9.6. Bibliography 179 Chapter 10. Reactive Transport Modeling of CO2 Through Cementitious Materials Under Supercritical Boundary Conditions  181 Jitun SHEN, Patrick DANGLA and Mickaël THIERY 10.1. Introduction 181 10.2. Carbonation of cement-based materials 183 10.2.1. Solubility of the supercritical CO2 in the pore solution 183 10.2.2. Chemical reactions 184 10.2.3. Carbonation of CH 185 10.2.4. Carbonation of C-S-H 187 10.2.5. Porosity change 190 10.3. Reactive transport modeling 191 10.3.1. Field equations 191 10.3.2. Transport of the liquid phase 194 10.3.3. Transport of the gas phase 194 10.3.4. Transport of aqueous species 196 10.4. Simulation results and discussion 196 10.4.1. Sandstone-like conditions 197 10.4.2. Limestone-like conditions 198 10.4.3. Study of CO2 concentration and initial porosity 199 10.4.4. Supercritical boundary conditions 201 10.5. Conclusion 204 10.6. Acknowledgment 205 10.7. Bibliography 205 Chapter 11. Chemo-Poromechanical Study of Wellbore Cement Integrity 209 Jean-Michel PEREIRA and Valérie VALLIN 11.1. Introduction 209 11.2. Poromechanics of cement carbonation in the context of CO2 storage 210 11.2.1. Context and definitions 210 11.2.2. Chemical reactions 214 11.2.3. Chemo-poromechanical behaviour 217 11.2.4. Balance equations 221 11.3. Application to wellbore cement 222 11.3.1. Description of the problem 222 11.3.2. Initial state and boundary conditions 223 11.3.3. Illustrative results 223 11.4. Conclusion 227 11.5. Acknowledgments 227 11.6. Bibliography 227 List of Authors 229 Index  000

Reviews

Author Information

Gilles Pijaudier-Cabot is Professor at University of Pau and Pays de l'Adour, Pau, France. Jean-Michel Pereira is Reasearcher at Laboratory Navier - Ecole des Ponts ParisTech, Marne-la-Vallée, France.

Tab Content 6

Author Website:  

Customer Reviews

Recent Reviews

No review item found!

Add your own review!

Countries Available

All regions
Latest Reading Guide

MRG2025CC

 

Shopping Cart
Your cart is empty
Shopping cart
Mailing List