Generative Adversarial Networks and Deep Learning: Theory and Applications

Author:   Roshani Raut (Pimpri Chinchwad College of Engineering, Pune, India) ,  Pranav D Pathak (MIT Art Design and Technology University, Pune, India) ,  Sachin R Sakhare (VIIT, Pune) ,  Sonali Patil (PCCoE, SPPU, Pune)
Publisher:   Taylor & Francis Ltd
ISBN:  

9781032068114


Pages:   208
Publication Date:   19 December 2024
Format:   Paperback
Availability:   Not yet available   Availability explained
This item is yet to be released. You can pre-order this item and we will dispatch it to you upon its release.

Our Price $116.00 Quantity:  
Pre-Order

Share |

Generative Adversarial Networks and Deep Learning: Theory and Applications


Add your own review!

Overview

This book explores how to use generative adversarial networks in a variety of applications and emphasises their substantial advancements over traditional generative models. This book's major goal is to concentrate on cutting-edge research in deep learning and generative adversarial networks, which includes creating new tools and methods for processing text, images, and audio. A Generative Adversarial Network (GAN) is a class of machine learning framework and is the next emerging network in deep learning applications. Generative Adversarial Networks(GANs) have the feasibility to build improved models, as they can generate the sample data as per application requirements. There are various applications of GAN in science and technology, including computer vision, security, multimedia and advertisements, image generation, image translation,text-to-images synthesis, video synthesis, generating high-resolution images, drug discovery, etc. Features: Presents a comprehensive guide on how to use GAN for images and videos. Includes case studies of Underwater Image Enhancement Using Generative Adversarial Network, Intrusion detection using GAN Highlights the inclusion of gaming effects using deep learning methods Examines the significant technological advancements in GAN and its real-world application. Discusses as GAN challenges and optimal solutions The book addresses scientific aspects for a wider audience such as junior and senior engineering, undergraduate and postgraduate students, researchers, and anyone interested in the trends development and opportunities in GAN and Deep Learning. The material in the book can serve as a reference in libraries, accreditation agencies, government agencies, and especially the academic institution of higher education intending to launch or reform their engineering curriculum

Full Product Details

Author:   Roshani Raut (Pimpri Chinchwad College of Engineering, Pune, India) ,  Pranav D Pathak (MIT Art Design and Technology University, Pune, India) ,  Sachin R Sakhare (VIIT, Pune) ,  Sonali Patil (PCCoE, SPPU, Pune)
Publisher:   Taylor & Francis Ltd
Imprint:   Chapman & Hall/CRC
ISBN:  

9781032068114


ISBN 10:   1032068116
Pages:   208
Publication Date:   19 December 2024
Audience:   College/higher education ,  Professional and scholarly ,  Tertiary & Higher Education ,  Professional & Vocational
Format:   Paperback
Publisher's Status:   Forthcoming
Availability:   Not yet available   Availability explained
This item is yet to be released. You can pre-order this item and we will dispatch it to you upon its release.

Table of Contents

1. Generative Adversarial Networks and Its Use cases. 2. Image-to-Image Translation using Generative Adversarial Networks. 3. Image Editing Using Generative Adversarial Network. 4. Generative Adversarial Networks for Video to Video Translation. 5. Security Issues in Generative Adversarial Networks. 6. Generative Adversarial Networks aided Intrusion Detection System. 7. Textual Description to Facial Image Generation. 8. An application of Generative Adversarial Network in Natural Language Generation. 9. Beyond image synthesis: GAN and Audio: It covers how GAN will be used for audio synthesis along with its applications. 10. A Study on the Application Domains of Electroencephalogram for the Deep Learning-Based Transformative Healthcare. 11. Emotion Detection using Generative Adversarial Network. 12. Underwater Image Enhancement Using Generative Adversarial Network. 13. Towards GAN Challenges and Its Optimal Solutions.

Reviews

Author Information

Tab Content 6

Author Website:  

Customer Reviews

Recent Reviews

No review item found!

Add your own review!

Countries Available

All regions
Latest Reading Guide

MRG2025CC

 

Shopping Cart
Your cart is empty
Shopping cart
Mailing List