|
![]() |
|||
|
||||
OverviewThis a comprehensive modern account of the theory of Lie groupoids and Lie algebroids, and their importance in differential geometry, in particular their relations with Poisson geometry and general connection theory. It covers much work done since the mid 1980s including the first treatment in book form of Poisson groupoids, Lie bialgebroids and double vector bundles, as well as a revised account of the relations between locally trivial Lie groupoids, Atiyah sequences, and connections in principal bundles. As such, this book will be of great interest to all those concerned with the use of Poisson geometry as a semi-classical limit of quantum geometry, as well as to all those working in or wishing to learn the modern theory of Lie groupoids and Lie algebroids. Full Product DetailsAuthor: Kirill C. H. Mackenzie (University of Sheffield)Publisher: Cambridge University Press Imprint: Cambridge University Press Volume: 213 ISBN: 9781107325883ISBN 10: 1107325889 Publication Date: 05 April 2013 Audience: Professional and scholarly , Professional & Vocational Format: Undefined Publisher's Status: Active Availability: Available To Order ![]() We have confirmation that this item is in stock with the supplier. It will be ordered in for you and dispatched immediately. Table of ContentsPart I. The General Theory: 1. Lie groupoids: fundamental theory; 2. Lie groupoids: algebraic constructions; 3. Lie algebroids: fundamental theory; 4. Lie algebroids: algebraic constructions; Part II. The Transitive Theory: 5. Infinitesimal connection theory; 6. Path connections and Lie theory; 7. Cohomology and Schouten calculus; 8. The cohomological obstruction; Part III. The Poisson and Symplectic Theories: 9. Double vector bundles; 10. Poisson structures and Lie algebras; 11. Poisson and symplectic groupoids; 12. Lie bialgebroids; Appendix; Bibliography; Index.ReviewsAuthor InformationKirill Mackenzie is a reader in Pure Mathematics at the University of Sheffield Tab Content 6Author Website:Countries AvailableAll regions |