|
![]() |
|||
|
||||
OverviewThis book presents new efficient methods for optimization in realistic large-scale, multi-agent systems. These methods do not require the agents to have the full information about the system, but instead allow them to make their local decisions based only on the local information, possibly obtained during communication with their local neighbors. The book, primarily aimed at researchers in optimization and control, considers three different information settings in multi-agent systems: oracle-based, communication-based, and payoff-based. For each of these information types, an efficient optimization algorithm is developed, which leads the system to an optimal state. The optimization problems are set without such restrictive assumptions as convexity of the objective functions, complicated communication topologies, closed-form expressions for costs and utilities, and finiteness of the system’s state space. Full Product DetailsAuthor: Tatiana TatarenkoPublisher: Springer International Publishing AG Imprint: Springer International Publishing AG Edition: Softcover reprint of the original 1st ed. 2017 Weight: 0.454kg ISBN: 9783319880396ISBN 10: 331988039 Pages: 171 Publication Date: 15 August 2018 Audience: Professional and scholarly , Professional & Vocational Format: Paperback Publisher's Status: Active Availability: Manufactured on demand ![]() We will order this item for you from a manufactured on demand supplier. Table of ContentsIntroduction and Research Motivation.- Backgrounds and Formulation of Contributions.- Logit Dynamics in Potential Games with Memoryless Players.- Stochastic Methods in Distributed Optimization and Game-Theoretic Learning.- Conclusion.- Appendix.ReviewsThis book offers new efficient methods for optimization and control in multi-agent systems through the agency of game-theoretic learning. ... The book represents an important scientific contribution in the field of optimization for the multi-agent systems. (Vasile Postolica, zbMath 1415.91002, 2019) Author InformationTatiana Tatarenko received her Ph.D. from the Control Methods and Robotics Lab at the Technical University of Darmstadt, Germany in 2017. In 2011, she graduated with honors in Mathematics, focusing on statistics and stochastic processes, from Lomonosov Moscow State University, Russia. Her main research interests are in the fields of distributed optimization, game-theoretic learning, and stochastic processes in networked multi-agent systems. Currently, Dr. Tatarenko is a research assistant at TU Darmstadt, where she teaches and supervises students. Tab Content 6Author Website:Countries AvailableAll regions |