Fuzzy logic: Theory and Applications

Author:   Aldon Cris B. Galido
Publisher:   Delve Publishing
ISBN:  

9781680956733


Pages:   270
Publication Date:   30 November 2016
Format:   Hardback
Availability:   In Print   Availability explained
This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us.

Our Price $393.30 Quantity:  
Add to Cart

Share |

Fuzzy logic: Theory and Applications


Add your own review!

Overview

Fuzzy logic is an approach to computing based on “degrees of truth” rather than the usual “true or false” (1 or 0) Boolean logic on which the modern computer is based. The idea of fuzzy logic was first advanced by Dr. Lotfi Zadeh of the University of California at Berkeley in the 1960s. Dr. Zadeh was working on the problem of computer understanding of natural language. Natural language (like most other activities in life and indeed the universe) is not easily translated into the absolute terms of 0 and 1. (Whether everything is ultimately describable in binary terms is a philosophical question worth pursuing, but in practice much data we might want to feed a computer is in some state in between and so, frequently, are the results of computing.) It may help to see fuzzy logic as the way reasoning really works and binary or Boolean logic is simply a special case of it. Fuzzy logic starts with and builds on a set of user-supplied human language rules. The fuzzy systems convert these rules to their mathematical equivalents. This simplifies the job of the system designer and the computer, and results in much more accurate representations of the way systems behave in the real world. Additional benefits of fuzzy logic include its simplicity and its flexibility. Fuzzy logic can handle problems with imprecise and incomplete data, and it can model nonlinear functions of arbitrary complexity. You can create a fuzzy system to match any set of input-output data. The Fuzzy Logic Toolbox makes this particularly easy by supplying adaptive techniques such as adaptive neuro-fuzzy inference systems (ANFIS) and fuzzy subtractive clustering. Fuzzy logic models, called fuzzy inference systems, consist of a number of conditional “if-then” rules. For the designer who understands the system, these rules are easy to write, and as many rules as necessary can be supplied to describe the system adequately (although typically only a moderate number of rules are needed). In fuzzy logic, unlike standard conditional logic, the truth of any statement is a matter of degree. (How cold is it? How high should we set the heat?) We are familiar with inference rules of the form p -> q (p implies q). With fuzzy logic, it’s possible to say (.5* p ) -> (.5 * q). For example, for the rule if (weather is cold) then (heat is on), both variables, cold and on, map to ranges of values. Fuzzy inference systems rely on membership functions to explain to the computer how to calculate the correct value between 0 and 1. The most tangible applications of fuzzy logic control have appeared commercial appliances. Specifically, but not limited to heating ventilation and air conditioning (HVAC) systems. These systems use fuzzy logic thermostats to control the heating and cooling, this saves energy by making the system more efficient.

Full Product Details

Author:   Aldon Cris B. Galido
Publisher:   Delve Publishing
Imprint:   Delve Publishing
ISBN:  

9781680956733


ISBN 10:   1680956736
Pages:   270
Publication Date:   30 November 2016
Audience:   Professional and scholarly ,  Professional & Vocational
Format:   Hardback
Publisher's Status:   Active
Availability:   In Print   Availability explained
This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us.

Table of Contents

Reviews

Author Information

Aldon Galido is currently taking up his MS EE (Microelectronics) degree at the University of the Philippines - Diliman Campus. His interests include low voltage and low power integrated circuits for wireless sensor node applications. He is currently working as a Research Fellow for the Resilient Sensory Swarms for Smart Energy and Environmental Monitoring (RESE2NSE) project at the Philippine-California Advanced Research Institute.

Tab Content 6

Author Website:  

Customer Reviews

Recent Reviews

No review item found!

Add your own review!

Countries Available

All regions
Latest Reading Guide

MRG2025CC

 

Shopping Cart
Your cart is empty
Shopping cart
Mailing List